48,453 research outputs found

    Communicability Graph and Community Structures in Complex Networks

    Get PDF
    We use the concept of the network communicability (Phys. Rev. E 77 (2008) 036111) to define communities in a complex network. The communities are defined as the cliques of a communicability graph, which has the same set of nodes as the complex network and links determined by the communicability function. Then, the problem of finding the network communities is transformed to an all-clique problem of the communicability graph. We discuss the efficiency of this algorithm of community detection. In addition, we extend here the concept of the communicability to account for the strength of the interactions between the nodes by using the concept of inverse temperature of the network. Finally, we develop an algorithm to manage the different degrees of overlapping between the communities in a complex network. We then analyze the USA airport network, for which we successfully detect two big communities of the eastern airports and of the western/central airports as well as two bridging central communities. In striking contrast, a well-known algorithm groups all but two of the continental airports into one community.Comment: 36 pages, 5 figures, to appear in Applied Mathematics and Computatio

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Discussion of: Treelets--An adaptive multi-scale basis for sparse unordered data

    Full text link
    We would like to congratulate Lee, Nadler and Wasserman on their contribution to clustering and data reduction methods for high pp and low nn situations. A composite of clustering and traditional principal components analysis, treelets is an innovative method for multi-resolution analysis of unordered data. It is an improvement over traditional PCA and an important contribution to clustering methodology. Their paper [arXiv:0707.0481] presents theory and supporting applications addressing the two main goals of the treelet method: (1) Uncover the underlying structure of the data and (2) Data reduction prior to statistical learning methods. We will organize our discussion into two main parts to address their methodology in terms of each of these two goals. We will present and discuss treelets in terms of a clustering algorithm and an improvement over traditional PCA. We will also discuss the applicability of treelets to more general data, in particular, the application of treelets to microarray data.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS137F the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Performance of a community detection algorithm based on semidefinite programming

    Get PDF
    The problem of detecting communities in a graph is maybe one the most studied inference problems, given its simplicity and widespread diffusion among several disciplines. A very common benchmark for this problem is the stochastic block model or planted partition problem, where a phase transition takes place in the detection of the planted partition by changing the signal-to-noise ratio. Optimal algorithms for the detection exist which are based on spectral methods, but we show these are extremely sensible to slight modification in the generative model. Recently Javanmard, Montanari and Ricci-Tersenghi [1] have used statistical physics arguments, and numerical simulations to show that finding communities in the stochastic block model via semidefinite programming is quasi optimal. Further, the resulting semidefinite relaxation can be solved efficiently, and is very robust with respect to changes in the generative model. In this paper we study in detail several practical aspects of this new algorithm based on semidefinite programming for the detection of the planted partition. The algorithm turns out to be very fast, allowing the solution of problems with O(105) variables in few second on a laptop computer

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    corecore