9,129 research outputs found

    Quantum Circuit Cosmology: The Expansion of the Universe Since the First Qubit

    Get PDF
    We consider cosmological evolution from the perspective of quantum information. We present a quantum circuit model for the expansion of a comoving region of space, in which initially-unentangled ancilla qubits become entangled as expansion proceeds. We apply this model to the comoving region that now coincides with our Hubble volume, taking the number of entangled degrees of freedom in this region to be proportional to the de Sitter entropy. The quantum circuit model is applicable for at most 140 ee-folds of inflationary and post-inflationary expansion: we argue that no geometric description was possible before the time t1t_1 when our comoving region was one Planck length across, and contained one pair of entangled degrees of freedom. This approach could provide a framework for modeling the initial state of inflationary perturbations.Comment: v2, minor correction

    Geometrical bounds on irreversibility in open quantum systems

    Get PDF
    Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower bound to the irreversible entropy production for open quantum systems as well. These provide insights on the thermodynamics of the information erasure. Limits of the applicability of our bounds are discussed, and demonstrated in a quantum photonic simulator

    From quantum circuits to adiabatic algorithms

    Full text link
    This paper explores several aspects of the adiabatic quantum computation model. We first show a way that directly maps any arbitrary circuit in the standard quantum computing model to an adiabatic algorithm of the same depth. Specifically, we look for a smooth time-dependent Hamiltonian whose unique ground state slowly changes from the initial state of the circuit to its final state. Since this construction requires in general an n-local Hamiltonian, we will study whether approximation is possible using previous results on ground state entanglement and perturbation theory. Finally we will point out how the adiabatic model can be relaxed in various ways to allow for 2-local partially adiabatic algorithms as well as 2-local holonomic quantum algorithms.Comment: Version accepted by and to appear in Phys. Rev.

    Scrambling speed of random quantum circuits

    Full text link
    Random transformations are typically good at "scrambling" information. Specifically, in the quantum setting, scrambling usually refers to the process of mapping most initial pure product states under a unitary transformation to states which are macroscopically entangled, in the sense of being close to completely mixed on most subsystems containing a fraction fn of all n particles for some constant f. While the term scrambling is used in the context of the black hole information paradox, scrambling is related to problems involving decoupling in general, and to the question of how large isolated many-body systems reach local thermal equilibrium under their own unitary dynamics. Here, we study the speed at which various notions of scrambling/decoupling occur in a simplified but natural model of random two-particle interactions: random quantum circuits. For a circuit representing the dynamics generated by a local Hamiltonian, the depth of the circuit corresponds to time. Thus, we consider the depth of these circuits and we are typically interested in what can be done in a depth that is sublinear or even logarithmic in the size of the system. We resolve an outstanding conjecture raised in the context of the black hole information paradox with respect to the depth at which a typical quantum circuit generates an entanglement assisted encoding against the erasure channel. In addition, we prove that typical quantum circuits of poly(log n) depth satisfy a stronger notion of scrambling and can be used to encode alpha n qubits into n qubits so that up to beta n errors can be corrected, for some constants alpha, beta > 0.Comment: 24 pages, 2 figures. Superseded by http://arxiv.org/abs/1307.063
    • …
    corecore