450 research outputs found

    Revisiting loss-specific training of filter-based MRFs for image restoration

    Full text link
    It is now well known that Markov random fields (MRFs) are particularly effective for modeling image priors in low-level vision. Recent years have seen the emergence of two main approaches for learning the parameters in MRFs: (1) probabilistic learning using sampling-based algorithms and (2) loss-specific training based on MAP estimate. After investigating existing training approaches, it turns out that the performance of the loss-specific training has been significantly underestimated in existing work. In this paper, we revisit this approach and use techniques from bi-level optimization to solve it. We show that we can get a substantial gain in the final performance by solving the lower-level problem in the bi-level framework with high accuracy using our newly proposed algorithm. As a result, our trained model is on par with highly specialized image denoising algorithms and clearly outperforms probabilistically trained MRF models. Our findings suggest that for the loss-specific training scheme, solving the lower-level problem with higher accuracy is beneficial. Our trained model comes along with the additional advantage, that inference is extremely efficient. Our GPU-based implementation takes less than 1s to produce state-of-the-art performance.Comment: 10 pages, 2 figures, appear at 35th German Conference, GCPR 2013, Saarbr\"ucken, Germany, September 3-6, 2013. Proceeding

    Filter-Based Probabilistic Markov Random Field Image Priors: Learning, Evaluation, and Image Analysis

    Get PDF
    Markov random fields (MRF) based on linear filter responses are one of the most popular forms for modeling image priors due to their rigorous probabilistic interpretations and versatility in various applications. In this dissertation, we propose an application-independent method to quantitatively evaluate MRF image priors using model samples. To this end, we developed an efficient auxiliary-variable Gibbs samplers for a general class of MRFs with flexible potentials. We found that the popular pairwise and high-order MRF priors capture image statistics quite roughly and exhibit poor generative properties. We further developed new learning strategies and obtained high-order MRFs that well capture the statistics of the inbuilt features, thus being real maximum-entropy models, and other important statistical properties of natural images, outlining the capabilities of MRFs. We suggest a multi-modal extension of MRF potentials which not only allows to train more expressive priors, but also helps to reveal more insights of MRF variants, based on which we are able to train compact, fully-convolutional restricted Boltzmann machines (RBM) that can model visual repetitive textures even better than more complex and deep models. The learned high-order MRFs allow us to develop new methods for various real-world image analysis problems. For denoising of natural images and deconvolution of microscopy images, the MRF priors are employed in a pure generative setting. We propose efficient sampling-based methods to infer Bayesian minimum mean squared error (MMSE) estimates, which substantially outperform maximum a-posteriori (MAP) estimates and can compete with state-of-the-art discriminative methods. For non-rigid registration of live cell nuclei in time-lapse microscopy images, we propose a global optical flow-based method. The statistics of noise in fluorescence microscopy images are studied to derive an adaptive weighting scheme for increasing model robustness. High-order MRFs are also employed to train image filters for extracting important features of cell nuclei and the deformation of nuclei are then estimated in the learned feature spaces. The developed method outperforms previous approaches in terms of both registration accuracy and computational efficiency

    Discriminative Transfer Learning for General Image Restoration

    Full text link
    Recently, several discriminative learning approaches have been proposed for effective image restoration, achieving convincing trade-off between image quality and computational efficiency. However, these methods require separate training for each restoration task (e.g., denoising, deblurring, demosaicing) and problem condition (e.g., noise level of input images). This makes it time-consuming and difficult to encompass all tasks and conditions during training. In this paper, we propose a discriminative transfer learning method that incorporates formal proximal optimization and discriminative learning for general image restoration. The method requires a single-pass training and allows for reuse across various problems and conditions while achieving an efficiency comparable to previous discriminative approaches. Furthermore, after being trained, our model can be easily transferred to new likelihood terms to solve untrained tasks, or be combined with existing priors to further improve image restoration quality
    corecore