3,815 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF

    Efficient Machine-type Communication using Multi-metric Context-awareness for Cars used as Mobile Sensors in Upcoming 5G Networks

    Full text link
    Upcoming 5G-based communication networks will be confronted with huge increases in the amount of transmitted sensor data related to massive deployments of static and mobile Internet of Things (IoT) systems. Cars acting as mobile sensors will become important data sources for cloud-based applications like predictive maintenance and dynamic traffic forecast. Due to the limitation of available communication resources, it is expected that the grows in Machine-Type Communication (MTC) will cause severe interference with Human-to-human (H2H) communication. Consequently, more efficient transmission methods are highly required. In this paper, we present a probabilistic scheme for efficient transmission of vehicular sensor data which leverages favorable channel conditions and avoids transmissions when they are expected to be highly resource-consuming. Multiple variants of the proposed scheme are evaluated in comprehensive realworld experiments. Through machine learning based combination of multiple context metrics, the proposed scheme is able to achieve up to 164% higher average data rate values for sensor applications with soft deadline requirements compared to regular periodic transmission.Comment: Best Student Paper Awar

    Performance analysis of the interference adaptation dynamic channel allocation technique in wireless communication networks

    Get PDF
    Dynamic channel allocation (DCA) problem is one of the major research topics in the wireless networking area. The purpose of this technique is to relieve the contradiction between the increasing traffic load in wireless networks and the limited bandwidth resource across the air interface. The challenge of this problem comes from the following facts: a) even the basic DCA problem is shown to be NP-complete (none polynomial complete); b) the size of the state space of the problem is very large; and c) any practical DCA algorithm should run in real-time. Many heuristic DCA schemes have been proposed in the literature. It has been shown through simulation results that the interference adaptive dynamic channel allocation (IA-DCA) scheme is a promising strategy in Time Devision [sic] Multiple Accesss/Frequency Devision [sic] Multiple Accesss [sic] (TDMA/FDMA) based wireless communication systems. However, the analytical work on the IA-DCA strategy in the literature is nearly blank. The performance of a, DCA algorithm in TDMA/FDMA wireless systems is influenced by three factors: representation of the interference, traffic fluctuation, and the processing power of the algorithm. The major obstacle in analyzing IA-DCA is the computation of co-channel interference without the constraint of conventional channel reuse factors. To overcome this difficulty, one needs a representation pattern which can approximate the real interference distribution as accurately as desired, and is also computationally viable. For this purpose, a concept called channel reuse zone (CRZ) is introduced and the methodology of computing the area of a CRZ with an arbitrary, non-trivial channel reuse factor is defined. Based on this new concept, the computation of both downlink and uplink CO-channel interference is investigated with two different propagation models, namely a simplified deterministic model and a shadowing model. For the factor of the processing power, we proposed an idealized Interference Adaptation Maximum Packing (IAMP) scheme, which gives the upper bound of all IA-DCA schemes in terms of the system capacity. The effect of traffic dynamics is delt [sic] with in two steps. First, an asymptotic performance bound for the IA-DCA strategy is derived with the assumption of an arbitrarily large number of channels in the system. Then the performance bound for real wireless systems with the IA-DCA strategy is derived by alleviating this assumption. Our analytical result is compared with the performance bound drawn by Zander and Eriksson for reuse-partitioning DCA1 and some simulation results for IA-DCA in the literature. It turns out that the performance bound obtained in this work is much tighter than Zander and Eriksson\u27s bound and is in agreement with simulation results. 1only available for deterministic propagation model and downlink connection

    MIMO-UFMC Transceiver Schemes for Millimeter Wave Wireless Communications

    Full text link
    The UFMC modulation is among the most considered solutions for the realization of beyond-OFDM air interfaces for future wireless networks. This paper focuses on the design and analysis of an UFMC transceiver equipped with multiple antennas and operating at millimeter wave carrier frequencies. The paper provides the full mathematical model of a MIMO-UFMC transceiver, taking into account the presence of hybrid analog/digital beamformers at both ends of the communication links. Then, several detection structures are proposed, both for the case of single-packet isolated transmission, and for the case of multiple-packet continuous transmission. In the latter situation, the paper also considers the case in which no guard time among adjacent packets is inserted, trading off an increased level of interference with higher values of spectral efficiency. At the analysis stage, the several considered detection structures and transmission schemes are compared in terms of bit-error-rate, root-mean-square-error, and system throughput. The numerical results show that the proposed transceiver algorithms are effective and that the linear MMSE data detector is capable of well managing the increased interference brought by the removal of guard times among consecutive packets, thus yielding throughput gains of about 10 - 13 %\%. The effect of phase noise at the receiver is also numerically assessed, and it is shown that the recursive implementation of the linear MMSE exhibits some degree of robustness against this disturbance
    • …
    corecore