2,310 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Data-assisted modeling of complex chemical and biological systems

    Get PDF
    Complex systems are abundant in chemistry and biology; they can be multiscale, possibly high-dimensional or stochastic, with nonlinear dynamics and interacting components. It is often nontrivial (and sometimes impossible), to determine and study the macroscopic quantities of interest and the equations they obey. One can only (judiciously or randomly) probe the system, gather observations and study trends. In this thesis, Machine Learning is used as a complement to traditional modeling and numerical methods to enable data-assisted (or data-driven) dynamical systems. As case studies, three complex systems are sourced from diverse fields: The first one is a high-dimensional computational neuroscience model of the Suprachiasmatic Nucleus of the human brain, where bifurcation analysis is performed by simply probing the system. Then, manifold learning is employed to discover a latent space of neuronal heterogeneity. Second, Machine Learning surrogate models are used to optimize dynamically operated catalytic reactors. An algorithmic pipeline is presented through which it is possible to program catalysts with active learning. Third, Machine Learning is employed to extract laws of Partial Differential Equations describing bacterial Chemotaxis. It is demonstrated how Machine Learning manages to capture the rules of bacterial motility in the macroscopic level, starting from diverse data sources (including real-world experimental data). More importantly, a framework is constructed though which already existing, partial knowledge of the system can be exploited. These applications showcase how Machine Learning can be used synergistically with traditional simulations in different scenarios: (i) Equations are available but the overall system is so high-dimensional that efficiency and explainability suffer, (ii) Equations are available but lead to highly nonlinear black-box responses, (iii) Only data are available (of varying source and quality) and equations need to be discovered. For such data-assisted dynamical systems, we can perform fundamental tasks, such as integration, steady-state location, continuation and optimization. This work aims to unify traditional scientific computing and Machine Learning, in an efficient, data-economical, generalizable way, where both the physical system and the algorithm matter

    Supporting Safety Analysis of Deep Neural Networks with Automated Debugging and Repair

    Get PDF

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Subgroup discovery for structured target concepts

    Get PDF
    The main object of study in this thesis is subgroup discovery, a theoretical framework for finding subgroups in data—i.e., named sub-populations— whose behaviour with respect to a specified target concept is exceptional when compared to the rest of the dataset. This is a powerful tool that conveys crucial information to a human audience, but despite past advances has been limited to simple target concepts. In this work we propose algorithms that bring this framework to novel application domains. We introduce the concept of representative subgroups, which we use not only to ensure the fairness of a sub-population with regard to a sensitive trait, such as race or gender, but also to go beyond known trends in the data. For entities with additional relational information that can be encoded as a graph, we introduce a novel measure of robust connectedness which improves on established alternative measures of density; we then provide a method that uses this measure to discover which named sub-populations are more well-connected. Our contributions within subgroup discovery crescent with the introduction of kernelised subgroup discovery: a novel framework that enables the discovery of subgroups on i.i.d. target concepts with virtually any kind of structure. Importantly, our framework additionally provides a concrete and efficient tool that works out-of-the-box without any modification, apart from specifying the Gramian of a positive definite kernel. To use within kernelised subgroup discovery, but also on any other kind of kernel method, we additionally introduce a novel random walk graph kernel. Our kernel allows the fine tuning of the alignment between the vertices of the two compared graphs, during the count of the random walks, while we also propose meaningful structure-aware vertex labels to utilise this new capability. With these contributions we thoroughly extend the applicability of subgroup discovery and ultimately re-define it as a kernel method.Der Hauptgegenstand dieser Arbeit ist die Subgruppenentdeckung (Subgroup Discovery), ein theoretischer Rahmen für das Auffinden von Subgruppen in Daten—d. h. benannte Teilpopulationen—deren Verhalten in Bezug auf ein bestimmtes Targetkonzept im Vergleich zum Rest des Datensatzes außergewöhnlich ist. Es handelt sich hierbei um ein leistungsfähiges Instrument, das einem menschlichen Publikum wichtige Informationen vermittelt. Allerdings ist es trotz bisherigen Fortschritte auf einfache Targetkonzepte beschränkt. In dieser Arbeit schlagen wir Algorithmen vor, die diesen Rahmen auf neuartige Anwendungsbereiche übertragen. Wir führen das Konzept der repräsentativen Untergruppen ein, mit dem wir nicht nur die Fairness einer Teilpopulation in Bezug auf ein sensibles Merkmal wie Rasse oder Geschlecht sicherstellen, sondern auch über bekannte Trends in den Daten hinausgehen können. Für Entitäten mit zusätzlicher relationalen Information, die als Graph kodiert werden kann, führen wir ein neuartiges Maß für robuste Verbundenheit ein, das die etablierten alternativen Dichtemaße verbessert; anschließend stellen wir eine Methode bereit, die dieses Maß verwendet, um herauszufinden, welche benannte Teilpopulationen besser verbunden sind. Unsere Beiträge in diesem Rahmen gipfeln in der Einführung der kernelisierten Subgruppenentdeckung: ein neuartiger Rahmen, der die Entdeckung von Subgruppen für u.i.v. Targetkonzepten mit praktisch jeder Art von Struktur ermöglicht. Wichtigerweise, unser Rahmen bereitstellt zusätzlich ein konkretes und effizientes Werkzeug, das ohne jegliche Modifikation funktioniert, abgesehen von der Angabe des Gramian eines positiv definitiven Kernels. Für den Einsatz innerhalb der kernelisierten Subgruppentdeckung, aber auch für jede andere Art von Kernel-Methode, führen wir zusätzlich einen neuartigen Random-Walk-Graph-Kernel ein. Unser Kernel ermöglicht die Feinabstimmung der Ausrichtung zwischen den Eckpunkten der beiden unter-Vergleich-gestelltenen Graphen während der Zählung der Random Walks, während wir auch sinnvolle strukturbewusste Vertex-Labels vorschlagen, um diese neue Fähigkeit zu nutzen. Mit diesen Beiträgen erweitern wir die Anwendbarkeit der Subgruppentdeckung gründlich und definieren wir sie im Endeffekt als Kernel-Methode neu

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well
    corecore