1,028 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Topological Characterization of Task Solvability in General Models of Computation

    Full text link
    The famous asynchronous computability theorem (ACT) relates the existence of an asynchronous wait-free shared memory protocol for solving a task with the existence of a simplicial map from a subdivision of the simplicial complex representing the inputs to the simplicial complex representing the allowable outputs. The original theorem relies on a correspondence between protocols and simplicial maps in round-structured models of computation that induce a compact topology. This correspondence, however, is far from obvious for computation models that induce a non-compact topology, and indeed previous attempts to extend the ACT have failed. This paper shows that in every non-compact model, protocols solving tasks correspond to simplicial maps that need to be continuous. It first proves a generalized ACT for sub-IIS models, some of which are non-compact, and applies it to the set agreement task. Then it proves that in general models too, protocols are simplicial maps that need to be continuous, hence showing that the topological approach is universal. Finally, it shows that the approach used in ACT that equates protocols and simplicial complexes actually works for every compact model. Our study combines, for the first time, combinatorial and point-set topological aspects of the executions admitted by the computation model

    Making Self-Stabilizing Algorithms for Any Locally Greedy Problem

    Get PDF
    Self-stabilizing algorithms are a way to deal with network dynamicity, as it will update itself after a network change (addition or removal of nodes or edges), as long as changes are not frequent. We propose an automatic transformation of synchronous distributed algorithms that solve locally greedy and mendable problems into self-stabilizing algorithms in anonymous networks. Mendable problems are a generalization of greedy problems where any partial solution may be transformed -instead of completed- into a global solution: every time we extend the partial solution, we are allowed to change the previous partial solution up to a given distance. Locally here means that to extend a solution for a node, we need to look at a constant distance from it. In order to do this, we propose the first explicit self-stabilizing algorithm computing a (k,k-1)-ruling set (i.e. a "maximal independent set at distance k"). By combining this technique multiple times, we compute a distance-K coloring of the graph. With this coloring we can finally simulate Local model algorithms running in a constant number of rounds, using the colors as unique identifiers. Our algorithms work under the Gouda daemon, similar to the probabilistic daemon: if an event should eventually happen, it will occur

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Topological Characterization of Task Solvability in General Models of Computation

    Get PDF
    International audienceThe famous asynchronous computability theorem (ACT) relates the existence of an asynchronous wait-free shared memory protocol for solving a task with the existence of a simplicial map from a subdivision of the simplicial complex representing the inputs to the simplicial complex representing the allowable outputs. The original theorem relies on a correspondence between protocols and simplicial maps in round-structured models of computation that induce a compact topology. This correspondence, however, is far from obvious for computation models that induce a non-compact topology, and indeed previous attempts to extend the ACT have failed. This paper shows that in every non-compact model, protocols solving tasks correspond to simplicial maps that need to be continuous. It first proves a generalized ACT for sub-IIS models, some of which are non-compact, and applies it to the set agreement task. Then it proves that in general models too, protocols are simplicial maps that need to be continuous, hence showing that the topological approach is universal. Finally, it shows that the approach used in ACT that equates protocols and simplicial complexes actually works for every compact model. Our study combines, for the first time, combinatorial and point-set topological aspects of the executions admitted by the computation model

    Semitopology: a new topological model of heterogeneous consensus

    Full text link
    A distributed system is permissionless when participants can join and leave the network without permission from a central authority. Many modern distributed systems are naturally permissionless, in the sense that a central permissioning authority would defeat their design purpose: this includes blockchains, filesharing protocols, some voting systems, and more. By their permissionless nature, such systems are heterogeneous: participants may only have a partial view of the system, and they may also have different goals and beliefs. Thus, the traditional notion of consensus -- i.e. system-wide agreement -- may not be adequate, and we may need to generalise it. This is a challenge: how should we understand what heterogeneous consensus is; what mathematical framework might this require; and how can we use this to build understanding and mathematical models of robust, effective, and secure permissionless systems in practice? We analyse heterogeneous consensus using semitopology as a framework. This is like topology, but without the restriction that intersections of opens be open. Semitopologies have a rich theory which is related to topology, but with its own distinct character and mathematics. We introduce novel well-behavedness conditions, including an anti-Hausdorff property and a new notion of `topen set', and we show how these structures relate to consensus. We give a restriction of semitopologies to witness semitopologies, which are an algorithmically tractable subclass corresponding to Horn clause theories, having particularly good mathematical properties. We introduce and study several other basic notions that are specific and novel to semitopologies, and study how known quantities in topology, such as dense subsets and closures, display interesting and useful new behaviour in this new semitopological context
    • …
    corecore