11,556 research outputs found

    Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems

    Full text link
    In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with mm constraints and matrices of size dd by dd is roughly reduced from O(m3+md3+m2d2)\mathcal{O}(m^3+md^3+m^2d^2) to O(d3)\mathcal{O}(d^3) (m>dm>d in our case).Comment: 14 page

    Localization of Control Synthesis Problem for Large-Scale Interconnected System Using IQC and Dissipativity Theories

    Full text link
    The synthesis problem for the compositional performance certification of interconnected systems is considered. A fairly unified description of control synthesis problem is given using integral quadratic constraints (IQC) and dissipativity. Starting with a given large-scale interconnected system and a global performance objective, an optimization problem is formulated to search for admissible dissipativity properties of each subsystems. Local control laws are then synthesized to certify the relevant dissipativity properties. Moreover, the term localization is introduced to describe a finite collection of syntheses problems, for the local subsystems, which are a feasibility certificate for the global synthesis problem. Consequently, the problem of localizing the global problem to a smaller collection of disjointed sets of subsystems, called groups, is considered. This works looks promising as another way of looking at decentralized control and also as a way of doing performance specifications for components in a large-scale system

    Generalization Bounds in the Predict-then-Optimize Framework

    Full text link
    The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem, and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters, in contrast to the prediction error of the parameters. This loss function was recently introduced in Elmachtoub and Grigas (2017) and referred to as the Smart Predict-then-Optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out-of-sample, in the context of the SPO loss. Since the SPO loss is non-convex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points, but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions, and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.Comment: Preliminary version in NeurIPS 201

    A sequential semidefinite programming method and an application in passive reduced-order modeling

    Full text link
    We consider the solution of nonlinear programs with nonlinear semidefiniteness constraints. The need for an efficient exploitation of the cone of positive semidefinite matrices makes the solution of such nonlinear semidefinite programs more complicated than the solution of standard nonlinear programs. In particular, a suitable symmetrization procedure needs to be chosen for the linearization of the complementarity condition. The choice of the symmetrization procedure can be shifted in a very natural way to certain linear semidefinite subproblems, and can thus be reduced to a well-studied problem. The resulting sequential semidefinite programming (SSP) method is a generalization of the well-known SQP method for standard nonlinear programs. We present a sensitivity result for nonlinear semidefinite programs, and then based on this result, we give a self-contained proof of local quadratic convergence of the SSP method. We also describe a class of nonlinear semidefinite programs that arise in passive reduced-order modeling, and we report results of some numerical experiments with the SSP method applied to problems in that class

    A receding horizon generalization of pointwise min-norm controllers

    Get PDF
    Control Lyapunov functions (CLFs) are used in conjunction with receding horizon control to develop a new class of receding horizon control schemes. In the process, strong connections between the seemingly disparate approaches are revealed, leading to a unified picture that ties together the notions of pointwise min-norm, receding horizon, and optimal control. This framework is used to develop a CLF based receding horizon scheme, of which a special case provides an appropriate extension of Sontag's formula. The scheme is first presented as an idealized continuous-time receding horizon control law. The issue of implementation under discrete-time sampling is then discussed as a modification. These schemes are shown to possess a number of desirable theoretical and implementation properties. An example is provided, demonstrating their application to a nonlinear control problem. Finally, stronger connections to both optimal and pointwise min-norm control are proved

    An extension of the projected gradient method to a Banach space setting with application in structural topology optimization

    Get PDF
    For the minimization of a nonlinear cost functional jj under convex constraints the relaxed projected gradient process φk+1=φk+αk(PH(φkλkHj(φk))φk)\varphi_{k+1} = \varphi_{k} + \alpha_k(P_H(\varphi_{k}-\lambda_k \nabla_H j(\varphi_{k}))-\varphi_{k}) is a well known method. The analysis is classically performed in a Hilbert space HH. We generalize this method to functionals jj which are differentiable in a Banach space. Thus it is possible to perform e.g. an L2L^2 gradient method if jj is only differentiable in LL^\infty. We show global convergence using Armijo backtracking in αk\alpha_k and allow the inner product and the scaling λk\lambda_k to change in every iteration. As application we present a structural topology optimization problem based on a phase field model, where the reduced cost functional jj is differentiable in H1LH^1\cap L^\infty. The presented numerical results using the H1H^1 inner product and a pointwise chosen metric including second order information show the expected mesh independency in the iteration numbers. The latter yields an additional, drastic decrease in iteration numbers as well as in computation time. Moreover we present numerical results using a BFGS update of the H1H^1 inner product for further optimization problems based on phase field models
    corecore