13,247 research outputs found

    Differential qd algorithm with shifts for rank-structured matrices

    Full text link
    Although QR iterations dominate in eigenvalue computations, there are several important cases when alternative LR-type algorithms may be preferable. In particular, in the symmetric tridiagonal case where differential qd algorithm with shifts (dqds) proposed by Fernando and Parlett enjoys often faster convergence while preserving high relative accuracy (that is not guaranteed in QR algorithm). In eigenvalue computations for rank-structured matrices QR algorithm is also a popular choice since, in the symmetric case, the rank structure is preserved. In the unsymmetric case, however, QR algorithm destroys the rank structure and, hence, LR-type algorithms come to play once again. In the current paper we discover several variants of qd algorithms for quasiseparable matrices. Remarkably, one of them, when applied to Hessenberg matrices becomes a direct generalization of dqds algorithm for tridiagonal matrices. Therefore, it can be applied to such important matrices as companion and confederate, and provides an alternative algorithm for finding roots of a polynomial represented in the basis of orthogonal polynomials. Results of preliminary numerical experiments are presented

    A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity

    Full text link
    The Petviashvili's iteration method has been known as a rapidly converging numerical algorithm for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with power-law nonlinearity: \ −Mu+up=0-Mu+u^p=0, where MM is a positive definite self-adjoint operator and p=constp={\rm const}. In this paper, we propose a systematic generalization of this method to both scalar and vector Hamiltonian equations with arbitrary form of nonlinearity and potential functions. For scalar equations, our generalized method requires only slightly more computational effort than the original Petviashvili method.Comment: to appear in J. Comp. Phys.; 35 page

    Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks

    Full text link
    Empirical studies show that gradient-based methods can learn deep neural networks (DNNs) with very good generalization performance in the over-parameterization regime, where DNNs can easily fit a random labeling of the training data. Very recently, a line of work explains in theory that with over-parameterization and proper random initialization, gradient-based methods can find the global minima of the training loss for DNNs. However, existing generalization error bounds are unable to explain the good generalization performance of over-parameterized DNNs. The major limitation of most existing generalization bounds is that they are based on uniform convergence and are independent of the training algorithm. In this work, we derive an algorithm-dependent generalization error bound for deep ReLU networks, and show that under certain assumptions on the data distribution, gradient descent (GD) with proper random initialization is able to train a sufficiently over-parameterized DNN to achieve arbitrarily small generalization error. Our work sheds light on explaining the good generalization performance of over-parameterized deep neural networks.Comment: 27 pages. This version simplifies the proof and improves the presentation in Version 3. In AAAI 202
    • …
    corecore