24,815 research outputs found

    Dynamic Bayesian Combination of Multiple Imperfect Classifiers

    Get PDF
    Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this paper we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination. We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present a dynamic Bayesian classifier combination approach and investigate the changes in base classifier performance over time.Comment: 35 pages, 12 figure

    Multivariate texture discrimination based on geodesics to class centroids on a generalized Gaussian Manifold

    Get PDF
    A texture discrimination scheme is proposed wherein probability distributions are deployed on a probabilistic manifold for modeling the wavelet statistics of images. We consider the Rao geodesic distance (GD) to the class centroid for texture discrimination in various classification experiments. We compare the performance of GD to class centroid with the Euclidean distance in a similar context, both in terms of accuracy and computational complexity. Also, we compare our proposed classification scheme with the k-nearest neighbor algorithm. Univariate and multivariate Gaussian and Laplace distributions, as well as generalized Gaussian distributions with variable shape parameter are each evaluated as a statistical model for the wavelet coefficients. The GD to the centroid outperforms the Euclidean distance and yields superior discrimination compared to the k-nearest neighbor approach

    BOLD and perfusion changes during epileptic generalised spike wave activity

    Get PDF
    It is unclear whether neurovascular coupling is maintained during epileptic discharges. Knowing this is important to allow appropriate inferences from functional imaging studies of epileptic activity. Recent blood oxygen level-dependent (BOLD) functional MRI (fMRI) studies have demonstrated negative BOLD responses (NBR) in frontal, parietal and posterior cingulate cortices during generalised spike wave activity (GSW). We hypothesized that GSW-related NBR commonly reflect decreased cerebral blood flow (CBF). We measured BOLD and cerebral blood flow responses using simultaneous EEG with BOLD and arterial spin label (ASL) fMRI at 3 T. Four patients with epilepsy were studied; two with idiopathic generalized epilepsy (IGE) and two with secondary generalized epilepsy (SGE). We found GSW-related NBR in frontal, parietal and posterior cingulate cortices. We measured the coupling between BOLD and CBF changes during GSW and normal background EEG and found a positive correlation between the simultaneously measured BOLD and CBF throughout the imaged volume. Frontal and thalamic activation were seen in two patients with SGE, concordant with the electro-clinical features of their epilepsy. There was striking reproducibility of the GSW-associated BOLD response in subjects previously studied at 1.5 T. Our results show a preserved relationship between BOLD and CBF changes during rest and GSW activity consistent with normal neurovascular coupling in patients with generalized epilepsy and in particular during GSW activity. Cortical activations appear to reflect areas of discharge generation whilst deactivations reflect changes in conscious resting state activity

    Semantic Autoencoder for Zero-Shot Learning

    Full text link
    Existing zero-shot learning (ZSL) models typically learn a projection function from a feature space to a semantic embedding space (e.g.~attribute space). However, such a projection function is only concerned with predicting the training seen class semantic representation (e.g.~attribute prediction) or classification. When applied to test data, which in the context of ZSL contains different (unseen) classes without training data, a ZSL model typically suffers from the project domain shift problem. In this work, we present a novel solution to ZSL based on learning a Semantic AutoEncoder (SAE). Taking the encoder-decoder paradigm, an encoder aims to project a visual feature vector into the semantic space as in the existing ZSL models. However, the decoder exerts an additional constraint, that is, the projection/code must be able to reconstruct the original visual feature. We show that with this additional reconstruction constraint, the learned projection function from the seen classes is able to generalise better to the new unseen classes. Importantly, the encoder and decoder are linear and symmetric which enable us to develop an extremely efficient learning algorithm. Extensive experiments on six benchmark datasets demonstrate that the proposed SAE outperforms significantly the existing ZSL models with the additional benefit of lower computational cost. Furthermore, when the SAE is applied to supervised clustering problem, it also beats the state-of-the-art.Comment: accepted to CVPR201

    Detection of bimanual gestures everywhere: why it matters, what we need and what is missing

    Full text link
    Bimanual gestures are of the utmost importance for the study of motor coordination in humans and in everyday activities. A reliable detection of bimanual gestures in unconstrained environments is fundamental for their clinical study and to assess common activities of daily living. This paper investigates techniques for a reliable, unconstrained detection and classification of bimanual gestures. It assumes the availability of inertial data originating from the two hands/arms, builds upon a previously developed technique for gesture modelling based on Gaussian Mixture Modelling (GMM) and Gaussian Mixture Regression (GMR), and compares different modelling and classification techniques, which are based on a number of assumptions inspired by literature about how bimanual gestures are represented and modelled in the brain. Experiments show results related to 5 everyday bimanual activities, which have been selected on the basis of three main parameters: (not) constraining the two hands by a physical tool, (not) requiring a specific sequence of single-hand gestures, being recursive (or not). In the best performing combination of modeling approach and classification technique, five out of five activities are recognized up to an accuracy of 97%, a precision of 82% and a level of recall of 100%.Comment: Submitted to Robotics and Autonomous Systems (Elsevier

    Learning with Symmetric Label Noise: The Importance of Being Unhinged

    Full text link
    Convex potential minimisation is the de facto approach to binary classification. However, Long and Servedio [2010] proved that under symmetric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoids the Long and Servedio [2010] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most standard learners SLN-robust. Experiments confirm the SLN-robustness of the unhinged loss

    Mind the nuisance: Gaussian process classification using privileged noise

    Get PDF
    The learning with privileged information setting has recently attracted a lot of attention within the machine learning community, as it allows the integration of additional knowledge into the training process of a classifier, even when this comes in the form of a data modality that is not available at test time. Here, we show that privileged information can naturally be treated as noise in the latent function of a Gaussian process classifier (GPC). That is, in contrast to the standard GPC setting, the latent function is not just a nuisance but a feature: it becomes a natural measure of confidence about the training data by modulating the slope of the GPC probit likelihood function. Extensive experiments on public datasets show that the proposed GPC method using privileged noise, called GPC+, improves over a standard GPC without privileged knowledge, and also over the current state-of-the-art SVM-based method, SVM+. Moreover, we show that advanced neural networks and deep learning methods can be compressed as privileged information
    • …
    corecore