13,703 research outputs found

    On Real-Time Synthetic Primate Vision

    Get PDF
    The primate vision system exhibits numerous capabilities. Some important basic visual competencies include: 1) a consistent representation of visual space across eye movements; 2) egocentric spatial perception; 3) coordinated stereo fixation upon and pursuit of dynamic objects; and 4) attentional gaze deployment. We present a synthetic vision system that incorporates these competencies.We hypothesize that similarities between the underlying synthetic system model and that of the primate vision system elicit accordingly similar gaze behaviors. Psychophysical trials were conducted to record human gaze behavior when free-viewing a reproducible, dynamic, 3D scene. Identical trials were conducted with the synthetic system. A statistical comparison of synthetic and human gaze behavior has shown that the two are remarkably similar

    Pauses and the temporal structure of speech

    Get PDF
    Natural-sounding speech synthesis requires close control over the temporal structure of the speech flow. This includes a full predictive scheme for the durational structure and in particuliar the prolongation of final syllables of lexemes as well as for the pausal structure in the utterance. In this chapter, a description of the temporal structure and the summary of the numerous factors that modify it are presented. In the second part, predictive schemes for the temporal structure of speech ("performance structures") are introduced, and their potential for characterising the overall prosodic structure of speech is demonstrated

    The biological frontier of pattern formation

    Get PDF
    Morphogenetic patterns are highly sophisticated dissipative structures. Are they governed by the same general mechanisms as chemical and hydrodynamic patterns? Turing's symmetry breaking and Wolpert's signalling provide alternative mechanisms. The current evidence points out that the latter is more relevant but reality is still far more complicated.Comment: 9 pages, 0 figure

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision
    corecore