58 research outputs found

    Deep Tree Transductions - A Short Survey

    Full text link
    The paper surveys recent extensions of the Long-Short Term Memory networks to handle tree structures from the perspective of learning non-trivial forms of isomorph structured transductions. It provides a discussion of modern TreeLSTM models, showing the effect of the bias induced by the direction of tree processing. An empirical analysis is performed on real-world benchmarks, highlighting how there is no single model adequate to effectively approach all transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep Learning (INNSBDDL 2019). arXiv admin note: text overlap with arXiv:1809.0909

    Learning Tree Distributions by Hidden Markov Models

    Full text link
    Hidden tree Markov models allow learning distributions for tree structured data while being interpretable as nondeterministic automata. We provide a concise summary of the main approaches in literature, focusing in particular on the causality assumptions introduced by the choice of a specific tree visit direction. We will then sketch a novel non-parametric generalization of the bottom-up hidden tree Markov model with its interpretation as a nondeterministic tree automaton with infinite states.Comment: Accepted in LearnAut2018 worksho

    Set Aggregation Network as a Trainable Pooling Layer

    Full text link
    Global pooling, such as max- or sum-pooling, is one of the key ingredients in deep neural networks used for processing images, texts, graphs and other types of structured data. Based on the recent DeepSets architecture proposed by Zaheer et al. (NIPS 2017), we introduce a Set Aggregation Network (SAN) as an alternative global pooling layer. In contrast to typical pooling operators, SAN allows to embed a given set of features to a vector representation of arbitrary size. We show that by adjusting the size of embedding, SAN is capable of preserving the whole information from the input. In experiments, we demonstrate that replacing global pooling layer by SAN leads to the improvement of classification accuracy. Moreover, it is less prone to overfitting and can be used as a regularizer.Comment: ICONIP 201

    Risk Assessment Algorithms Based On Recursive Neural Networks

    Get PDF
    The assessment of highly-risky situations at road intersections have been recently revealed as an important research topic within the context of the automotive industry. In this paper we shall introduce a novel approach to compute risk functions by using a combination of a highly non-linear processing model in conjunction with a powerful information encoding procedure. Specifically, the elements of information either static or dynamic that appear in a road intersection scene are encoded by using directed positional acyclic labeled graphs. The risk assessment problem is then reformulated in terms of an inductive learning task carried out by a recursive neural network. Recursive neural networks are connectionist models capable of solving supervised and non-supervised learning problems represented by directed ordered acyclic graphs. The potential of this novel approach is demonstrated through well predefined scenarios. The major difference of our approach compared to others is expressed by the fact of learning the structure of the risk. Furthermore, the combination of a rich information encoding procedure with a generalized model of dynamical recurrent networks permit us, as we shall demonstrate, a sophisticated processing of information that we believe as being a first step for building future advanced intersection safety system
    • 

    corecore