12,251 research outputs found

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    A Game-Theoretic Approach to Energy Trading in the Smart Grid

    Full text link
    Electric storage units constitute a key element in the emerging smart grid system. In this paper, the interactions and energy trading decisions of a number of geographically distributed storage units are studied using a novel framework based on game theory. In particular, a noncooperative game is formulated between storage units, such as PHEVs, or an array of batteries that are trading their stored energy. Here, each storage unit's owner can decide on the maximum amount of energy to sell in a local market so as to maximize a utility that reflects the tradeoff between the revenues from energy trading and the accompanying costs. Then in this energy exchange market between the storage units and the smart grid elements, the price at which energy is traded is determined via an auction mechanism. The game is shown to admit at least one Nash equilibrium and a novel proposed algorithm that is guaranteed to reach such an equilibrium point is proposed. Simulation results show that the proposed approach yields significant performance improvements, in terms of the average utility per storage unit, reaching up to 130.2% compared to a conventional greedy approach.Comment: 11 pages, 11 figures, journa
    corecore