11,462 research outputs found

    ARTMAP Neural Networks for Information Fusion and Data Mining: Map Production and Target Recognition Methodologies

    Full text link
    The Sensor Exploitation Group of MIT Lincoln Laboratory incorporated an early version of the ARTMAP neural network as the recognition engine of a hierarchical system for fusion and data mining of registered geospatial images. The Lincoln Lab system has been successfully fielded, but is limited to target I non-target identifications and does not produce whole maps. Procedures defined here extend these capabilities by means of a mapping method that learns to identify and distribute arbitrarily many target classes. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of canonical algorithms and a benchmark testbed has enabled the evaluation of candidate recognition networks as well as pre- and post-processing and feature selection options. The resulting mapping methodology sets a standard for a variety of spatial data mining tasks. In particular, training pixels are drawn from a region that is spatially distinct from the mapped region, which could feature an output class mix that is substantially different from that of the training set. The system recognition component, default ARTMAP, with its fully specified set of canonical parameter values, has become the a priori system of choice among this family of neural networks for a wide variety of applications.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624

    ARTMAP Neural Networks for Information Fusion and Data Mining: Map Production and Target Recognition Methodologies

    Full text link
    The Sensor Exploitation Group of MIT Lincoln Laboratory incorporated an early version of the ARTMAP neural network as the recognition engine of a hierarchical system for fusion and data mining of registered geospatial images. The Lincoln Lab system has been successfully fielded, but is limited to target I non-target identifications and does not produce whole maps. Procedures defined here extend these capabilities by means of a mapping method that learns to identify and distribute arbitrarily many target classes. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of canonical algorithms and a benchmark testbed has enabled the evaluation of candidate recognition networks as well as pre- and post-processing and feature selection options. The resulting mapping methodology sets a standard for a variety of spatial data mining tasks. In particular, training pixels are drawn from a region that is spatially distinct from the mapped region, which could feature an output class mix that is substantially different from that of the training set. The system recognition component, default ARTMAP, with its fully specified set of canonical parameter values, has become the a priori system of choice among this family of neural networks for a wide variety of applications.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Learning Representations of Emotional Speech with Deep Convolutional Generative Adversarial Networks

    Full text link
    Automatically assessing emotional valence in human speech has historically been a difficult task for machine learning algorithms. The subtle changes in the voice of the speaker that are indicative of positive or negative emotional states are often "overshadowed" by voice characteristics relating to emotional intensity or emotional activation. In this work we explore a representation learning approach that automatically derives discriminative representations of emotional speech. In particular, we investigate two machine learning strategies to improve classifier performance: (1) utilization of unlabeled data using a deep convolutional generative adversarial network (DCGAN), and (2) multitask learning. Within our extensive experiments we leverage a multitask annotated emotional corpus as well as a large unlabeled meeting corpus (around 100 hours). Our speaker-independent classification experiments show that in particular the use of unlabeled data in our investigations improves performance of the classifiers and both fully supervised baseline approaches are outperformed considerably. We improve the classification of emotional valence on a discrete 5-point scale to 43.88% and on a 3-point scale to 49.80%, which is competitive to state-of-the-art performance

    Wireless Interference Identification with Convolutional Neural Networks

    Full text link
    The steadily growing use of license-free frequency bands requires reliable coexistence management for deterministic medium utilization. For interference mitigation, proper wireless interference identification (WII) is essential. In this work we propose the first WII approach based upon deep convolutional neural networks (CNNs). The CNN naively learns its features through self-optimization during an extensive data-driven GPU-based training process. We propose a CNN example which is based upon sensing snapshots with a limited duration of 12.8 {\mu}s and an acquisition bandwidth of 10 MHz. The CNN differs between 15 classes. They represent packet transmissions of IEEE 802.11 b/g, IEEE 802.15.4 and IEEE 802.15.1 with overlapping frequency channels within the 2.4 GHz ISM band. We show that the CNN outperforms state-of-the-art WII approaches and has a classification accuracy greater than 95% for signal-to-noise ratio of at least -5 dB
    • …
    corecore