10,744 research outputs found

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Learning Opposites Using Neural Networks

    Full text link
    Many research works have successfully extended algorithms such as evolutionary algorithms, reinforcement agents and neural networks using "opposition-based learning" (OBL). Two types of the "opposites" have been defined in the literature, namely \textit{type-I} and \textit{type-II}. The former are linear in nature and applicable to the variable space, hence easy to calculate. On the other hand, type-II opposites capture the "oppositeness" in the output space. In fact, type-I opposites are considered a special case of type-II opposites where inputs and outputs have a linear relationship. However, in many real-world problems, inputs and outputs do in fact exhibit a nonlinear relationship. Therefore, type-II opposites are expected to be better in capturing the sense of "opposition" in terms of the input-output relation. In the absence of any knowledge about the problem at hand, there seems to be no intuitive way to calculate the type-II opposites. In this paper, we introduce an approach to learn type-II opposites from the given inputs and their outputs using the artificial neural networks (ANNs). We first perform \emph{opposition mining} on the sample data, and then use the mined data to learn the relationship between input xx and its opposite x˘\breve{x}. We have validated our algorithm using various benchmark functions to compare it against an evolving fuzzy inference approach that has been recently introduced. The results show the better performance of a neural approach to learn the opposites. This will create new possibilities for integrating oppositional schemes within existing algorithms promising a potential increase in convergence speed and/or accuracy.Comment: To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 201

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems
    • …
    corecore