269 research outputs found

    Behavioural pattern identification and prediction in intelligent environments

    Get PDF
    In this paper, the application of soft computing techniques in prediction of an occupant's behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments

    An Occupancy Based Cyber-Physical System Design for Intelligent Building Automation

    Get PDF
    Cyber-physical system (CPS) includes the class of Intelligent Building Automation System (IBAS) which increasingly utilizes advanced technologies for long term stability, economy, longevity, and user comfort. However, there are diverse issues associated with wireless interconnection of the sensors, controllers, and power consuming physical end devices. In this paper, a novel architecture of CPS for wireless networked IBAS with priority-based access mechanism is proposed for zones in a large building with dynamically varying occupancy. Priority status of zones based on occupancy is determined using fuzzy inference engine. Nondominated Sorting Genetic Algorithm-II (NSGA-II) is used to solve the optimization problem involving conflicting demands of minimizing total energy consumption and maximizing occupant comfort levels in building. An algorithm is proposed for power scheduling in sensor nodes to reduce their energy consumption. Wi-Fi with Elimination-Yield Nonpreemptive Multiple Access (EY-NPMA) scheme is used for assigning priority among nodes for wireless channel access. Controller design techniques are also proposed for ensuring the stability of the closed loop control of IBAS in the presence of packet dropouts due to unreliable network links

    Predictive modelling of building energy consumption based on a hybrid nature-inspired optimization algorithm

    Get PDF
    Overall energy consumption has expanded over the previous decades because of rapid population, urbanization and industrial growth rates. The high demand for energy leads to higher cost per unit of energy, which, can impact on the running costs of commercial and residential dwellings. Hence, there is a need for more effective predictive techniques that can be used to measure and optimize energy usage of large arrays of connected Internet of Things (IoT) devices and control points that constitute modern built environments. In this paper, we propose a lightweight IoT framework for predicting energy usage at a localized level for optimal configuration of building-wide energy dissemination policies. Autoregressive Integrated Moving Average (ARIMA) as a statistical liner model could be used for this purpose; however, it is unable to model the dynamic nonlinear relationships in nonstationary fluctuating power consumption data. Therefore, we have developed an improved hybrid model based on the ARIMA, Support Vector Regression (SVRs) and Particle Swarm Optimization (PSO) to predict precision energy usage from supplied data. The proposed model is evaluated using power consumption data acquired from environmental actuator devices controlling a large functional space in a building. Results show that the proposed hybrid model out-performs other alternative techniques in forecasting power consumption. The approach is appropriate in building energy policy implementations due to its precise estimations of energy consumption and lightweight monitoring infrastructure which can lead to reducing the cost on energy consumption. Moreover, it provides an accurate tool to optimize the energy consumption strategies in wider built environments such as smart cities

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Neurobat, a Predictive and Adaptive Heating Control System Using Artificial Neural Networks

    Get PDF
    The paper describes a predictive and adaptive heating controller, using artificial neural networks to allow the adaptation of the control model to the real conditions (climate, building characteristics, user's behaviour). The controller algorithm has been developed and tested as a collaborative project between the CSEM (Centre Suisse d'Electronique et de Microtechnique, Neuchâtel, Switzerland, project leader), and the LESO-PB (Solar Energy and Building Physics Laboratory, EPFL, Lausanne, Switzerland). A significant support has been provided by leading Swiss industries in control systems. The project itself has been funded by the Swiss Federal Office of Energy (SFOE). The project has allowed the development of an original algorithm, especially suited for water heating systems, and its testing both by simulation and by experimentation on an inhabited building. The experimentation has been done using a PC software implementation. A second phase of the project, currently going on, aims at building a commercial system based on the NEUROBAT algorithm
    corecore