5,710 research outputs found

    Penalized Likelihood and Bayesian Function Selection in Regression Models

    Full text link
    Challenging research in various fields has driven a wide range of methodological advances in variable selection for regression models with high-dimensional predictors. In comparison, selection of nonlinear functions in models with additive predictors has been considered only more recently. Several competing suggestions have been developed at about the same time and often do not refer to each other. This article provides a state-of-the-art review on function selection, focusing on penalized likelihood and Bayesian concepts, relating various approaches to each other in a unified framework. In an empirical comparison, also including boosting, we evaluate several methods through applications to simulated and real data, thereby providing some guidance on their performance in practice

    Empirical stationary correlations for semi-supervised learning on graphs

    Full text link
    In semi-supervised learning on graphs, response variables observed at one node are used to estimate missing values at other nodes. The methods exploit correlations between nearby nodes in the graph. In this paper we prove that many such proposals are equivalent to kriging predictors based on a fixed covariance matrix driven by the link structure of the graph. We then propose a data-driven estimator of the correlation structure that exploits patterns among the observed response values. By incorporating even a small fraction of observed covariation into the predictions, we are able to obtain much improved prediction on two graph data sets.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS293 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fast calibrated additive quantile regression

    Full text link
    We propose a novel framework for fitting additive quantile regression models, which provides well calibrated inference about the conditional quantiles and fast automatic estimation of the smoothing parameters, for model structures as diverse as those usable with distributional GAMs, while maintaining equivalent numerical efficiency and stability. The proposed methods are at once statistically rigorous and computationally efficient, because they are based on the general belief updating framework of Bissiri et al. (2016) to loss based inference, but compute by adapting the stable fitting methods of Wood et al. (2016). We show how the pinball loss is statistically suboptimal relative to a novel smooth generalisation, which also gives access to fast estimation methods. Further, we provide a novel calibration method for efficiently selecting the 'learning rate' balancing the loss with the smoothing priors during inference, thereby obtaining reliable quantile uncertainty estimates. Our work was motivated by a probabilistic electricity load forecasting application, used here to demonstrate the proposed approach. The methods described here are implemented by the qgam R package, available on the Comprehensive R Archive Network (CRAN)

    Bankruptcy Prediction of Small and Medium Enterprises Using a Flexible Binary Generalized Extreme Value Model

    Full text link
    We introduce a binary regression accounting-based model for bankruptcy prediction of small and medium enterprises (SMEs). The main advantage of the model lies in its predictive performance in identifying defaulted SMEs. Another advantage, which is especially relevant for banks, is that the relationship between the accounting characteristics of SMEs and response is not assumed a priori (e.g., linear, quadratic or cubic) and can be determined from the data. The proposed approach uses the quantile function of the generalized extreme value distribution as link function as well as smooth functions of accounting characteristics to flexibly model covariate effects. Therefore, the usual assumptions in scoring models of symmetric link function and linear or pre-specied covariate-response relationships are relaxed. Out-of-sample and out-of-time validation on Italian data shows that our proposal outperforms the commonly used (logistic) scoring model for different default horizons

    Nonparametric Transient Classification using Adaptive Wavelets

    Full text link
    Classifying transients based on multi band light curves is a challenging but crucial problem in the era of GAIA and LSST since the sheer volume of transients will make spectroscopic classification unfeasible. Here we present a nonparametric classifier that uses the transient's light curve measurements to predict its class given training data. It implements two novel components: the first is the use of the BAGIDIS wavelet methodology - a characterization of functional data using hierarchical wavelet coefficients. The second novelty is the introduction of a ranked probability classifier on the wavelet coefficients that handles both the heteroscedasticity of the data in addition to the potential non-representativity of the training set. The ranked classifier is simple and quick to implement while a major advantage of the BAGIDIS wavelets is that they are translation invariant, hence they do not need the light curves to be aligned to extract features. Further, BAGIDIS is nonparametric so it can be used for blind searches for new objects. We demonstrate the effectiveness of our ranked wavelet classifier against the well-tested Supernova Photometric Classification Challenge dataset in which the challenge is to correctly classify light curves as Type Ia or non-Ia supernovae. We train our ranked probability classifier on the spectroscopically-confirmed subsample (which is not representative) and show that it gives good results for all supernova with observed light curve timespans greater than 100 days (roughly 55% of the dataset). For such data, we obtain a Ia efficiency of 80.5% and a purity of 82.4% yielding a highly competitive score of 0.49 whilst implementing a truly "model-blind" approach to supernova classification. Consequently this approach may be particularly suitable for the classification of astronomical transients in the era of large synoptic sky surveys.Comment: 14 pages, 8 figures. Published in MNRA

    Regularization for Generalized Additive Mixed Models by Likelihood-Based Boosting

    Get PDF
    With the emergence of semi- and nonparametric regression the generalized linear mixed model has been expanded to account for additive predictors. In the present paper an approach to variable selection is proposed that works for generalized additive mixed models. In contrast to common procedures it can be used in high-dimensional settings where many covariates are available and the form of the influence is unknown. It is constructed as a componentwise boosting method and hence is able to perform variable selection. The complexity of the resulting estimator is determined by information criteria. The method is nvestigated in simulation studies for binary and Poisson responses and is illustrated by using real data sets

    Regularization for Generalized Additive Mixed Models by Likelihood-Based Boosting

    Get PDF
    With the emergence of semi- and nonparametric regression the generalized linear mixed model has been expanded to account for additive predictors. In the present paper an approach to variable selection is proposed that works for generalized additive mixed models. In contrast to common procedures it can be used in high-dimensional settings where many covariates are available and the form of the influence is unknown. It is constructed as a componentwise boosting method and hence is able to perform variable selection. The complexity of the resulting estimator is determined by information criteria. The method is nvestigated in simulation studies for binary and Poisson responses and is illustrated by using real data sets
    • …
    corecore