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Abstract

With the emergence of semi- and nonparametric regression the generalized linear mixed model

has been expanded to account for additive predictors. In the present paper an approach to

variable selection is proposed that works for generalized additive mixed models. In contrast

to common procedures it can be used in high-dimensional settings where many covariates are

available and the form of the influence is unknown. It is constructed as a componentwise

boosting method and hence is able to perform variable selection. The complexity of the result-

ing estimator is determined by information criteria. The method is investigated in simulation

studies for binary and Poisson responses and is illustrated by using real data sets.
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1 Introduction

General additive mixed models (GAMMs) are an extension of generalized additive models

incorporating random effects. In the present article a boosting approach for the selection of

additive predictors is proposed. Boosting originates in the machine learning community and

turned out to be a successful and practical strategy to improve classification procedures by

combining estimates with reweighted observations. The idea of boosting has become especially

important in the last decade as the issue of estimating high-dimensional models has become

more urgent. Since Freund and Schapire (1996) have presented their famous AdaBoost many

extensions have been developed (e.g. gradient boosting by Friedman et al., 2000, generalized

linear and additive regression based on the L2-loss by Bühlmann and Yu, 2003).

In the following the concept of likelihood-based boosting is extended to GAMMs which are

sketched in Section 2. The fitting procedure is outlined in Section 3 and a simulation study is

reported in Section 4. Finally, two applications are considered in Section 5.

2 Generalized Additive Mixed Models - GAMMs

Let yit denote observation t in cluster i, i = 1, . . . , n, t = 1, . . . , Ti, collected in yTi =

(yi1, . . . , yiTi). Let xTit = (1, xit1, . . . , xitp) be the covariate vector associated with fixed effects

and zTit = (zit1, . . . , zitq) the covariate vector associated with random effects. It is assumed

that the observations yit are conditionally independent with means µit = E(yit|bi,xit, zit)
and variances var(yit|bi) = φυ(µit), where υ(.) is a known variance function and φ is a scale

parameter.

In addition to parametric effects the model that is considered includes an additive term

that depends on covariates uTit = (uit1, . . . , uitm). The generalized semiparametric mixed model

that is assumed to hold is given by

g(µit) = xTitβββ +

m∑

j=1

α(j)(uitj) + zTitbi (1)

= ηpar

it + ηadd

it + ηrand

it ,

where g is a monotonic differentiable link function, ηpar

it = xTitβββ is a linear parametric term

with parameter vector βββT = (β0, β1, . . . , βp), including the intercept, ηadd
it =

∑m
j=1 α(j)(uitj) is

an additive term with unspecified influence functions α(1), . . . , α(m) and finally ηrand
it = zTitbi

contains the cluster-specific random effects bi ∼ N(0,Q), where Q is a q × q dimensional
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known or unknown covariance matrix. An alternative form that we also use in the following is

µit = h(ηit), ηit = ηpar

it + ηadd

it + ηrand

it ,

where h = g−1 is the inverse link function. If the functions α(j)(·) are strictly linear, the model

reduces to the common generalized linear mixed model (GLMM). Versions of the additive model

(1) have been considered by Zeger and Diggle (1994), Lin and Zhang (1999) and Zhang et al.

(1998). While Lin and Zhang (1999) used natural cubic smoothing splines for the estimation

of the unknown functions α(j)(·), in the following regression splines are used. In recent years

regression splines have been widely used for the estimation of additive structures, see, for

example, Marx and Eilers (1998), Wood (2004, 2006) and Wand (2000).

In regression spline methodology the unknown functions α(j)(·) are approximated by basis

functions. A simple basis is known as the B-spline basis of degree d, yielding

α(j)(u) =
k∑

i=1

α
(j)
i B

(j)
i (u; d),

where B
(j)
i (u; d) denotes the i-th basis function for variable j. For an extensive discussion of

smoothing by using splines, see for example Ruppert et al. (2003). More detailed information

about the B-spline basis can be found for example in Eilers and Marx (1996).

In the following let αααTj = (α
(j)
1 , . . . , α

(j)
k ) denote the unknown parameter vector of the j-

th smooth function and let BT
j (u) = (B

(j)
1 (u; d), . . . , B

(j)
k (u; d)) represent the vector-valued

evaluations of the k basis functions. Then the parameterized model for (1) has the form

g(µit) = xTitβββ + BT
1 (uit1)ααα1 + · · ·+ BT

m(uitm)αααm + zTitb.

By collecting observations within one cluster one obtains the design matrix XT
i = (xi1, . . . ,xiTi)

for the i-th covariate, and analogously we set ZTi = (zi1, . . . , ziTi), so that the model has the

simpler form

g(µµµi) = Xiβββ + Bi1ααα1 + · · ·+ Bimαααm + Zibi,

where BT
ij = [Bj(ui1j), . . . ,Bj(uiTij)] denotes the transposed B-spline design matrix of the

i-th cluster and variable j and g is understood componentwise. Furthermore, let XT =

[XT
1 , . . . ,X

T
n ], let Z = diag(Z1, . . . ,Zn) be a block-diagonal matrix and let bT = (bT1 , . . . ,b

T
n )

be the vector collecting all random effects. Then one obtains the model in the matrix form

g(µµµ) = Xβββ + B1ααα1 + . . .+ Bmαααm + Zb, (2)
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with BT
j = [BT

1j , . . . ,B
T
nj ] representing the transposed B-spline design matrix of the j-th

smooth function as in equation (13) in Appendix A. The model can be further reduced to

g(µµµ) = Xβββ + Bααα+ Zb,

where αααT = (αααT1 , . . . ,ααα
T
m) and B = [B1, . . . ,Bm].

The Penalized Likelihood Approach

Focusing on generalized mixed models we assume that the conditional density of yit, given

explanatory variables and the random effect bi, is of exponential family type

f(yit|xit,uit,bi) = exp

{
(yitθit − κ(θit))

φ
+ c(yit, φ)

}
, (3)

where θit = θ(µit) denotes the natural parameter, κ(θit) is a specific function corresponding

to the type of exponential family, c(.) the log normalization constant and φ the dispersion

parameter (for example Fahrmeir and Tutz, 2001).

A popular method to maximize generalized mixed models is penalized quasi-likelihood

(PQL), which has been suggested by Breslow and Clayton (1993), Lin and Breslow (1996)

and Breslow and Lin (1995). In the following we briefly sketch the PQL approach for the

semiparametric model. As common in mixed models, we assume that the covariance matrix

Q(%%%) of the random effects bi may depend on an unknown parameter vector %%% which specifies

the correlation. We specify the joint likelihood-function by the parameters of the covariance

structure %%% together with the dispersion parameter φ, which are collected in νννT = (φ,%%%T ) and

define the parameter vector δδδT = (βββT ,αααT ,bT ). The corresponding log-likelihood is

l(δδδ,ννν) =

n∑

i=1

log

(∫
f(yi|δδδ,ννν)p(bi, ννν)dbi

)
.

To avoid too severe restrictions on the form of the functions α(j)(·), we use many basis functions,

say about 20 for each function α(j)(.), and add a penalty term to the log-likelihood. Then one

obtains the penalized log-likelihood

lpen(δδδ,ννν) =
n∑

i=1

log

(∫
f(yi|δδδ,ννν)p(bi, ννν)dbi

)
− 1

2

m∑

j=1

λjααα
T
j Kjαααj , (4)

where Kj penalizes the parameters αααj and λj are smoothing parameters which control the

influence of the j-th penalty term. When using P-splines one penalizes the difference between

adjacent categories in the form λjααα
T
j Kjαααj = λjααα

T
j (∆∆∆d)T∆∆∆dαααj , where ∆∆∆d denotes the difference
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operator matrix of degree d, for details see, for example, Eilers and Marx (1996). The log-

likelihood (4) has also been considered by Lin and Zhang (1999) but with Kj referring to

smoothing splines. For smoothing splines the dimension of αααj increases with sample size

whereas for the low rank smoother used here the dimension does not depend on n.

By approximating the likelihood in (4) along the lines of Breslow and Clayton (1993) one

obtains the double penalized log-likelihood:

lpen(δδδ,ννν) =
n∑

i=1

log(f(yi|δδδ,ννν))− 1

2

n∑

i=1

bTi Q(%%%)−1bi −
1

2

m∑

j=1

λjααα
T
j Kjαααj , (5)

where the first penalty term
∑n
i=1 b

T
i Q(%%%)−1bi is due to the approximation based on the

Laplace method and the second penalty term
∑m
j=1 λjααα

T
j Kjαααj determines the smoothness of

the functions α(j)(.), depending on the chosen smoothing parameter λj .

PQL usually works within the profile likelihood concept. It is distinguished between the

estimation of δδδ, given the plug-in estimate ν̂νν, resulting in the profile-likelihood lpen(δδδ, ν̂νν), and

the estimation of ννν. The PQL method for generalized additive mixed models is implemented

in the gamm function of the R-package mgcv (Wood, 2006). Further aspects were discussed by

Wolfinger and O’Connell (1993), Littell et al. (1996) and Vonesh (1996).

Note that the double penalized log-likelihood from equation (5) can also be derived by

an EM-type algorithm, using posterior modes and curvatures instead of posterior means and

covariances (see, for example, Fahrmeir and Tutz, 2001).

3 Boosted GAMMs - bGAMM

Boosting originates in the machine learning community and turned out to be a successful and

practical strategy to improve classification procedures by combining estimates with reweighted

observations. The idea of boosting has become more and more important in the last decade as

the issue of estimating high-dimensional models has become more urgent. Since Freund and

Schapire (1996) have presented their famous AdaBoost many other variants in the framework

of functional gradient descent optimization have been developed (for example Friedman et al.,

2000 or Friedman, 2001). Bühlmann and Yu (2003) further extended boosting to generalized

linear and additive regression problems based on the L2-loss.

Boosting is especially successful as a method to select relevant predictors in linear and

generalized linear models. For extensions to GLMMs, see Tutz and Groll (2011). It works by

iterative fitting of residuals using “weak learners”. The boosting algorithm that is presented

in the following extends the method to additive mixed models.
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3.1 The Boosting Algorithm

The following algorithm uses componentwise boosting, that is, only one component of the

additive predictor, in our case one weight vector αααj , is fitted at a time. That means that a

model containing the linear term and only one smooth component is fitted in one iteration step.

We use a reparametrization technique explained in more detail in Appendix A. The B-spline

design matrices Bj from equation (2), corresponding to the difference penalty matrices Kj and

spline coefficients αααj , can be transformed to new design matrices ΦΦΦj with spline coefficients

α̃ααj , which consist of an unpenalized and a penalized part and correspond to diagonal penalty

matrices K̃ := K̃j = diag(0, . . . , 0, 1, . . . , 1), which are equal for all j = 1, . . . ,m. We drop

the first column of each matrix ΦΦΦj , because we are in the semiparametric model context (see

Appendix B).

The predictor containing all covariates associated with fixed effects and only the covariate

vector of the r-th smooth effect yields for cluster i

ηηηi·r = Xiβββ + ΦΦΦirα̃ααr + Zibi,

where ΦΦΦir is a sub-matrix of ΦΦΦr, consisting of only the Ti rows from ΦΦΦr corresponding to cluster

i. Altogether the predictor, considering only the r-th smooth effect, has the form

ηηη··r = Xβββ + ΦΦΦrα̃ααr + Zb.

Moreover, we define ΦΦΦ := [ΦΦΦ1, . . . ,ΦΦΦm] and introduce the new parameter vector γγγT :=

(βββT , α̃ααT ,bT ). The following boosting algorithm uses the EM-type algorithm given in Fahrmeir

and Tutz (2001). We further want to introduce the vector γγγTr := (βββT , α̃ααTr ,b
T ), containing only

the spline coefficients of the r-th smooth component.

Algorithm bGAMM

1. Initialization

Compute starting values β̂ββ
(0)
, ˆ̃ααα(0), b̂

(0)
, Q̂

(0)
and set η̂ηη(0) = Xβ̂ββ

(0)
+ ΦΦΦˆ̃ααα(0) + Zb̂

(0)
.

2. Iteration

For l = 1, 2, . . .

(a) Refitting of residuals

(i.) Computation of parameters
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For r ∈ {1, . . . ,m} the model

g(µµµ) = η̂ηη(l−1) + Xβββ + ΦΦΦrα̃ααr + Zb

is fitted, where η̂ηη(l−1) = Xβ̂ββ
(l−1)

+ ΦΦΦˆ̃ααα(l−1) + Zb̂
(l−1)

is considered a known

off-set. Estimation refers to γγγTr = (βββT , α̃ααTr ,b
T ). In order to obtain an addi-

tive correction of the already fitted terms, we use one-step Fisher scoring with

starting value γγγr = 0. Therefore Fisher scoring for the r-th component takes

the simple form

γ̂γγ(l)r = (Fpen

r (γ̂γγ(l−1)))−1sr(γ̂γγ
(l−1)) (6)

with penalized pseudo Fisher matrix Fpen

r (γγγ) and using the unpenalized version

of the penalized score function spen
r (γγγ) = ∂lpen(γγγ)/∂γγγr (see Section 3.2.1). The

variance-covariance components are replaced by their current estimates Q̂
(l−1)

.

(ii.) Selection step

Select from r ∈ {1, . . . ,m} the component j that leads to the smallest AIC
(l)
r or

BIC
(l)
r as given in Section 3.2.3 and select the corresponding vector (γ̂γγ

(l)
j )T =(

(β̂ββ
∗
)T , (ˆ̃ααα∗j )

T , (b̂
∗
)T
)

.

(iii.) Update

Set

β̂ββ
(l)

= β̂ββ
(l−1)

+ β̂ββ
∗
, b̂

(l)
= b̂

(l−1)
+ b̂

∗

and for r = 1, . . . ,m set

ˆ̃ααα(l)
r =





ˆ̃ααα
(l−1)
r if r 6= j

ˆ̃ααα
(l−1)
r + ˆ̃ααα∗r if r = j,

(γ̂γγ(l))T =

(
(β̂ββ

(l)
)T , (ˆ̃ααα

(l)
1 )T , . . . , (ˆ̃ααα(l)

m )T , (b̂
(l)

)T
)
.

With A := [X,ΦΦΦ,Z] update

η̂ηη(l) = Aγ̂γγ(l)

(b) Computation of variance-covariance components

Estimates of Q̂
(l)

are obtained as approximate REML-type estimates or alternative

methods (see Section 3.2.2)

Note that the EM-type algorithm may be viewed as an approximate EM algorithm, where the

posterior of bi is approximated by a normal distribution. In the case of linear random effects
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models, the EM-type algorithm corresponds to an exact EM algorithm since the posterior of bi

is normal, and so posterior mode and mean coincide, as do posterior covariance and curvature.

3.2 Computational details of bGAMM

In the following we give a more detailed description of the single steps of the bGAMM algorithm.

First the derivation of the score function and the Fisher matrix are described. Then we

present two estimation techniques for the variance-covariance components, give the details of

the computation of the starting values and explain the selection procedure.

3.2.1 Score Function and Fisher Matrix

In this section we specify more precisely the single components which are derived in step 2 (a)

of the bGAMM algorithm. For r ∈ {1, . . . , p} the penalized score functions spen
r (γγγ) are obtained

by differentiating the penalized log-likelihood from equation (5) with respect to γγγr, that is

spen
r (γγγ) = ∂lpen(γγγ)/∂γγγr. To keep the notation simple, we omit the argument γγγ in the following

and write s
pen (l−1)
r =

(
(s

pen (l−1)
βββr )T , (s

pen (l−1)
α̃ααrr

)T , (s
pen (l−1)
1r )T , . . . , (s

pen (l−1)
nr )T

)T
= spen

r (γ̂γγ(l−1))

for the r-th evaluated penalized score function at (l−1)-th iteration. For given Q, it has single

components

s
pen (l−1)
βββr =

n∑

i=1

XT
i DiΣΣΣ

−1
i (yi − µ̂µµi),

s
pen (l−1)
α̃ααrr

=
n∑

i=1

ΦΦΦTirDiΣΣΣ
−1
i (yi − µ̂µµi)− λK̃ˆ̃ααα(l−1)

r ,

s
pen (l−1)
ir = ZTi DiΣΣΣ

−1
i (yi − µ̂µµi)−Q−1b̂

(l−1)
i , i = 1, . . . , n,

with Di = ∂h(η̂ηηi)/∂ηηη,ΣΣΣi = cov(yi), and µ̂µµi = h(η̂ηηi) evaluated at previous fit η̂ηηi = Aiγ̂γγ
(l−1),

whereas Ai := [Xi,ΦΦΦi,Zi]. One should keep in mind that actually, Di,ΣΣΣi,µµµi and ηηηi are

depending on γ̂γγ(l−1) and thus on the current iteration, which is suppressed here to keep the

notation simple. The vector s
pen (l−1)
βββr has dimension p+ 1, the vector s

pen (l−1)
α̃ααrr

has dimension

k corresponding to the number of basis functions, while the vectors s
pen (l−1)
ir are of dimension

s. Note that s
pen (l−1)
r could be seen as penalized score function because of the terms λK̃ˆ̃ααα

(l−1)
r

and Q−1b̂
(l−1)
i .

Let β̃ββ
T

r := (βββT , α̃ααTr ). Then the penalized pseudo Fisher matrix Fpen (l−1)
r , r ∈ {1, . . . ,m},
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which is partitioned into

Fpen (l−1)
r =




Fβ̃ββrβ̃ββrr
Fβ̃ββr1r

Fβ̃ββr2r
. . . Fβ̃ββrnr

F1β̃ββrr
F11r 0

F2β̃ββrr
F22r

...
. . .

Fnβ̃ββrr
0 Fnnr




, with Fβ̃ββrβ̃ββrr
=


 Fββββββr Fβββα̃ααrr

Fα̃ααrβββr Fα̃ααrα̃ααrr


 ,

has single components

Fββββββr = −E
(
∂2lpen

∂βββ∂βββT

)
=

n∑

i=1

XT
i DiΣΣΣ

−1
i DiXi

Fβββα̃ααrr = FTα̃ααrβββr = −E
(
∂2lpen

∂βββ∂α̃ααTr

)
=

n∑

i=1

XT
i DiΣΣΣ

−1
i DiΦΦΦir,

Fα̃ααrα̃ααrr = −E
(

∂2lpen

∂α̃ααr∂α̃αα
T
r

)
=

n∑

i=1

ΦΦΦTirDiΣΣΣ
−1
i DiΦΦΦir − λK̃,

Fβ̃ββrir
= FT

iβ̃ββrr
= −E

(
∂2lpen

∂β̃ββr∂b
T
i

)
= [Xi,ΦΦΦir]

TDiΣΣΣ
−1
i DiZi,

Fiir = −E
(

∂2lpen

∂bi∂b
T
i

)
= ZTi DiΣΣΣ

−1
i DiZi + Q−1.

whereas Di = ∂h(η̂ηηi)/∂ηηη and ΣΣΣi = cov(yi) again are evaluated at the previous fit η̂ηηi = Aiγ̂γγ
(l−1).

3.2.2 Variance-Covariance Components

In this section we present two different ways how to perform the update of the variance-

covariance matrix Q from step 2. (b) of the our bGAMM algorithm.

Breslow and Clayton (1993) recommend to estimate the variance by maximizing the profile

likelihood that is associated with the normal theory model. By replacing βββ and ααα with β̂ββ and

α̂αα we maximize

l(Qb) = −1

2
log(|V(γ̂γγ)|)− 1

2
log(|[X,ΦΦΦ]TV−1(γ̂γγ)[X,ΦΦΦ]|)

−1

2
(η̃ηη(γ̂γγ)−Xβ̂ββ −ΦΦΦα̂αα)TV−1(γ̂γγ)(η̃ηη(γ̂γγ)−Xβ̂ββ −ΦΦΦα̂αα)

with respect to Qb, using the pseudo-observations η̃ηη(γγγ) = Aγγγ + D−1(γγγ)(y − µµµ(γγγ)) and with

matrices V(γγγ) = W−1(γγγ) + ZQbZ
T , W(γγγ) = D(γγγ)ΣΣΣ−1(γγγ)D(γγγ)T and with block-diagonal

matrices Qb = diag(Q, . . . ,Q), D = diag(D1, . . . ,Dn) and ΣΣΣ = diag(ΣΣΣ1, . . .ΣΣΣn). Having cal-

culated γ̂γγ(l) in the l-th boosting iteration, we obtain the estimator Q̂
(l)

b , which is an approximate

REML-type estimate for Qb.
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An alternative estimate, that can be derived as an approximate EM algorithm, uses the

posterior mode estimates and posterior curvatures. One derives (Fpen (l))−1, the inverse of the

penalized pseudo Fisher matrix of the full model corresponding to the l-th iteration using the

posterior mode estimates γ̂γγ(l) to obtain the posterior curvatures V̂
(l)

ii . Now compute Q̂
(l)

by

Q̂
(l)

=
1

n

n∑

i=1

(V̂
(l)

ii + b̂
(l)

i (b̂
(l)

i )T ).

In general, the Vii are derived via the formula

Vii = F−1ii + F−1ii Fiβ̃ββ(Fβ̃βββ̃ββ −
n∑

i=1

Fβ̃ββiF
−1
ii Fiβ̃ββ)−1Fβ̃ββiF

−1
ii ,

whereas β̃ββ
T

:= (βββ,αααJ1 , . . . ,αααJs) and J = {j : sign(αααj) 6= 0, j = 1, . . . ,m} is the index set

of “active” covariates, corresponding to the s := #J ≤ m non-zero spline coefficient vectors.

Fβ̃βββ̃ββ ,Fiβ̃ββ ,Fii are the elements of the penalized pseudo Fisher matrix Fpen of the full model

corresponding to the l-th iteration, for details see for example Tutz and Hennevogl (1996) or

Fahrmeir and Tutz (2001).

3.2.3 Starting Values, Hat Matrix and Selection in bGAMM

We compute the starting values β̂ββ
(0)
, ˆ̃ααα(0), b̂

(0)
, Q̂

(0)
from step 1 of the bGAMM algorithm by

setting ˆ̃ααα(0) = 000 and then fitting a GLMM given by

g(µit) = xTitβββ + zTitbi, i = 1, . . . , n; t = 1, . . . , Ti. (7)

This model can be fitted e.g. by using the R-function glmmPQL (Wood, 2006) from the MASS

library (Venables and Ripley, 2002).

To find the appropriate complexity of our model we use the effective degrees of free-

dom, which corresponds to the trace of the hat matrix (Hastie and Tibshirani, 1990). In

the following we derive the hat matrix corresponding to the l-th boosting step for the r-

th smooth component (compare Tutz and Groll, 2011). Let A..r := [X,ΦΦΦr,Z] and ΛΛΛ =

diag(0, . . . , 0, K̃,Q−1, . . . ,Q−1) be a block diagonal penalty matrix with a diagonal consisting

of p+ 1 zeros corresponding to the fixed effects at the beginning, followed by K̃ corresponding

to the r-th smooth effect and finally n times the matrix Q−1. Then the Fisher matrix Fpen (l−1)
r

and the score vector s
pen (l−1)
r are given in closed form as

Fpen (l−1)
r = AT

··rWlA..r + ΛΛΛ
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and

spen (l−1)
r = AT

··rWlD
−1
l (y− µ̂µµ(l−1))−ΛΛΛγ̂γγ(l−1)r

where Wl,Dl,ΣΣΣl and µ̂µµ(l−1) are evaluated at the previous fit η̂ηη(l−1) = Aγ̂γγ(l−1). For r = 1, . . . , p

the refit in the l-th iteration step by Fisher scoring (6) is given by

γ̂γγ(l)r = (Fpen (l−1)
r )−1s(l−1)r

=
(
AT
..rWlA··r + ΛΛΛ

)−1
AT
..rWlD

−1
l (y− µ̂µµ(l−1)).

We define the predictor corresponding to the r-th refit in the l-th iteration step as

η̂ηη(l)..r := η̂ηη(l−1) + A..rγ̂γγ
(l)
r ,

η̂ηη(l)..r − η̂ηη(l−1) = A..rγ̂γγ
(l)
r

= A..r

(
AT
..rWlA··r + ΛΛΛ

)−1
AT
..rWlD

−1
l (y− µ̂µµ(l−1)).

Taylor approximation of first order h(η̂ηη) ≈ h(ηηη) + ∂h(ηηη)
∂ηηηT

(η̂ηη − ηηη) yields

µ̂µµ(l)
··r ≈ µ̂µµ(l−1) + Dl(η̂ηη

(l)
..r − η̂ηη(l−1)),

η̂ηη(l)··r − η̂ηη(l−1) ≈ D−1l (µ̂µµ(l)
..r − µ̂µµ(l−1)),

and therefore

D−1l (µ̂µµ(l)
··r − µ̂µµ(l−1)) ≈ A..r

(
AT
..rWlA..r + ΛΛΛ

)−1
AT
..rWlD

−1
l (y− µ̂µµ(l−1)).

Multiplication with W
1/2
l and using W1/2D−1 = ΣΣΣ−1/2 yields

ΣΣΣ
−1/2
l (µ̂µµ(l)

..r − µ̂µµ(l−1)) ≈ H̃
(l)

r ΣΣΣ
−1/2
l (y− µ̂µµ(l−1)),

where H̃
(l)

r := W
1/2
l A..r

(
AT
..rWlA..r + ΛΛΛ

)−1
AT
..rW

1/2
l denotes the usual generalized ridge

regression hat-matrix. Defining M(l)
r := ΣΣΣ

1/2
l H̃

(l)

r ΣΣΣ
−1/2
l yields the approximation

µ̂µµ(l)
..r ≈ µ̂µµ(l−1) + M(l)

r (y− µ̂µµ(l−1))

= µ̂µµ(l−1) + M(l)
r [(y− µ̂µµ(l−2))− (µ̂µµ(l−1) − µ̂µµ(l−2))]

≈ µ̂µµ(l−1) + M(l)
r [(y− µ̂µµ(l−2))−M

(l−1)
jl−1

(y− µ̂µµ(l−2))],

whereas jl−1 ∈ {1, . . . , p} denotes the index of the component selected in boosting step l − 1.
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The hat matrix corresponding to the fixed effects model from equation (7) is

M(0) = A0(AT
0 W1A0 + K0)−1AT

0 W1,

with A0 := [X,Z] and block diagonal penalty matrix K0 := diag(0, . . . , 0,Q−1, . . . ,Q−1)

whereas the first p+1 zeros correspond to the fixed effects. As the approximation µ̂µµ(0) ≈M(0)y

holds, one obtains

µ̂µµ(1)
..r ≈ µ̂µµ(0) + M(1)

r (y− µ̂µµ(0))

≈ M(0)y + M(1)
r (I−M(0))y.

In the following, to indicate that the hat matrices of the former steps have been fixed, let

jk ∈ {1, . . . , p} denote the index of the component selected in boosting step k. Then we can

abbreviate Mjk := M
(k)
jk

for the matrix corresponding to the component that has been selected

in the k-th iteration. Further, in a recursive manner, we get

µ̂µµ(l)
..r ≈ H(l)

r y,

where

H(l)
r = I− (I−M(l)

r )(I−Mjl−1
)(I−Mjl−2

) · . . . · (I−M(0))

= M(l)
r

l−1∏

i=0

(I−Mji) +
l−1∑

k=0

Mjk

k−1∏

i=0

(I−Mji)

=
l∑

k=0

Mjk

k−1∏

i=0

(I−Mji),

is the hat matrix corresponding to the l-th boosting step considering the r-th component,

whereas Mjl := M(l)
r is not fixed yet.

For a given hat matrix H, we can determine the complexity of our model by the following

information criteria:

AIC = −2 l(µ̂µµ) + 2 trace (H), (8)

BIC = −2 l(µ̂µµ) + 2 trace (H) log(n), (9)

where

l(µµµ) =

n∑

i=1

li(µ̂µµi) =

n∑

i=1

log f(yi|µ̂µµi) (10)

denotes the non-penalized version of the log-likelihood from equation (5) and li(µ̂µµi) the log-

12



likelihood contributions of (yi,Xi,ΦΦΦi,Zi). Note that the log-likelihood can be written with µµµ

instead of δδδ in the argument, considering the definition of the natural parameter θ = θ(µµµ) in

(3) and using µµµ = h(ηηη) and ηηη = Aγγγ.

For exponential family distributions log f(yi|µ̂µµi) has a well-known form. For example in

the case of binary responses, one obtains

log f(yi|µ̂µµi) =

Ti∑

t=1

yit log µ̂it + (1− yit) log (1− µ̂it),

whereas in the case of Poisson responses, one has

log f(yi|µ̂µµi) =

Ti∑

t=1

yit log µ̂it − µ̂it.

Based on (10), the information criteria (8) and (9) used in the l-th boosting step, considering

the r-th component, have the form AIC
(l)
r = −2 l(µ̂µµ(l)

..r) + 2 trace (H(l)
r ), BIC

(l)
r = −2 l(µ̂µµ(l)

..r) +

2 trace (H(l)
r ) log(n) with l(µ̂µµ(l)

..r) =
∑n
i=1 log f(yi|µ̂µµ(l)

i.r).

3.2.4 Stopping Criterion

In the l-th step one selects from r ∈ {1, . . . , p} the component jl that minimizes AIC
(l)
r

or BIC
(l)
r and obtains AIC(l) := AIC

(l)
jl

. We choose a number lmax of maximal boosting

steps, e.g. lmax = 1000, and stop the algorithm at iteration lmax. Then we select from

L := {1, 2, . . . , lmax} the component lopt, where AIC(l) or BIC(l) is smallest, that is

lopt = arg min
l∈L

AIC(l),

lopt = arg min
l∈L

BIC(l).

Finally, we obtain the parameter estimates γ̂γγ(lopt), Q̂
(lopt)

and the corresponding fit µ̂µµ(lopt).

4 Simulation study

In the following we present two simulation studies to investigate the performance of the bGAMM

algorithm, one with Bernoulli data and one with Poisson data. We also compare the algorithm

to alternative approaches. The optimal smoothing parameter λ chosen as the value λopt which

leads to the smallest AIC or BIC from (8) and (9), which are computed on a fine grid. Also

general cross validation could be used, with the negative effect of expanding computational

time.
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4.1 Bernoulli Data with Logit-Link

The underlying model is the random intercept additive Bernoulli model

ηit =

p∑

j=1

fj(uitj) + bi, i = 1, . . . , 40, t = 1, . . . , 10

E[yit] =
exp(ηit)

1 + exp(ηit)
:= πit yit ∼ B(1, πit)

with smooth effects given by

f1(u) = 6 sin(u) with u ∈ [−π, π],

f2(u) = 6 cos(u) with u ∈ [−π, 2π],

f3(u) = u2 with u ∈ [−π, π],

f4(u) = 0.4u3 with u ∈ [−π, π],

f5(u) = −u2 with u ∈ [−π, π],

fj(u) = 0 with u ∈ [−π, π], for j = 6, . . . , 50.

We choose the different settings p = 5, 10, 15, 20, 50. For j = 1, . . . , 50 the vectors uTit =

(uit1, . . . , uit50) have been drawn independently with components following a uniform distri-

bution within the specified interval. The number of observations is fixed as n = 40, Ti :=

T = 10,∀i = 1, . . . , n. The random effects are specified by bi ∼ N(0, σ2
b ) with three different

scenarios σb ∈ {0.4, 0.8, 1.6}.
The performance of estimators is evaluated separately for the structural components and

the variance. We compare the results of our bGAMM algorithm with the results that one achieves

by using the R function gamm recommended in Wood (2006), which is providing a penalized

quasi-likelihood approach for the generalized additive mixed model. It is supplied with the

mgcv library.

By averaging across 100 data sets we consider mean squared errors for the smooth compo-

nents and σb given by

msef :=

N∑

t=1

p∑

j=1

(fj(vtj)− f̂j(vtj))2, mseσb := ||σb − σ̂b||2,

where vtj , t = 1, . . . , N denote fine and evenly spaced grids on the different predictor spaces

for j = 1, . . . , p.

Additional information on the stability of the algorithms was collected in notconv (n.c.),

which indicates the sum over the datasets, where numerical problems occurred during estima-

tion. Moreover, falseneg (f.n.) reflects the mean over all 100 simulations of the number of
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functions fj , j = 1, 2, 3, 4, 5, that were not selected while falsepos (f.p.) reflects the mean over

the number of functions fj , j = 6, . . . , p, that were wrongly selected. As the gamm function is

not able to perform variable selection it always estimates all functions fj , j = 1, . . . , p.

The results of all quantities for different scenarios of σb and for varying number of noise

variables can be found in Table 1. It should be noted that, in order to obtain a better compa-

rability, the quantities msef and mseσb are only averaged across those cases, where the gamm

function yields reasonable results, while the quantities notconv, falseneg and falsepos are av-

eraged across all 100 simulations. Also the following boxplots include only those cases, where

no numerical problems occurred for the gamm function, see Figures 1 and 2.. For completeness

we give the results of the bGAMM algorithm averaged over all 100 simulations in the Table 2.

gamm bGAMM (EM) bGAMM (REML)
σb p msef mseσb n.c. msef mseσb f.p. f.n. msef mseσb f.p. f.n.

0.4 5 54809.28 0.188 64 34017.24 0.884 0 0 41002.12 0.223 0 0.05
0.4 10 54826.50 0.112 85 34486.28 0.654 0 0 41220.06 0.122 0 0.05
0.4 15 51605.63 0.151 93 34465.05 1.442 0 0 40695.23 0.322 0 0.05
0.4 20 54706.54 0.149 96 36361.86 0.160 0 0 44823.88 0.104 0 0.05
0.4 50 - - 100 33648.53 1.359 0 0 41606.17 0.282 0 0.05
0.8 5 52641.67 0.470 55 34058.04 1.432 0 0 44332.94 0.474 0 0.08
0.8 10 53384.37 0.462 88 36665.52 1.257 0 0 43772.60 0.407 0 0.08
0.8 15 53842.01 0.272 95 32970.83 1.638 0 0 38868.70 0.445 0 0.08
0.8 20 55771.45 0.320 96 41776.10 1.254 0 0 41876.68 0.526 0 0.08
0.8 50 - - 100 34581.50 1.584 0 0 42755.58 0.545 0 0.08
1.6 5 53909.80 1.683 58 32268.83 1.689 0 0 39505.94 0.828 0 0.36
1.6 10 54376.56 2.160 86 34677.94 1.646 0 0 40186.27 0.806 0 0.36
1.6 15 53100.51 2.110 93 32380.74 1.410 0 0 40496.85 0.953 0 0.36
1.6 20 - - 100 32844.44 1.891 0 0 40306.13 0.927 0 0.36
1.6 50 - - 100 32884.22 1.897 0 0 40449.15 0.935 0 0.36

Table 1: Generalized additive mixed model with gamm and boosting (bGAMM) on Bernoulli data

bGAMM (EM) bGAMM (REML)
σb p msef mseσb msef mseσb
0.4 5 33563.44 1.382 41671.53 0.280
0.4 10 33563.44 1.382 41671.53 0.280
0.4 15 33563.44 1.382 41671.53 0.280
0.4 20 33530.58 1.395 41624.79 0.282
0.4 50 33648.53 1.359 41606.17 0.282
0.8 5 34581.50 1.584 42755.58 0.545
0.8 10 34581.50 1.584 42755.58 0.545
0.8 15 34581.50 1.584 42755.58 0.545
0.8 20 34581.50 1.584 42755.58 0.545
0.8 50 34581.50 1.584 42755.58 0.545
1.6 5 32844.44 1.891 40306.13 0.927
1.6 10 32844.44 1.891 40306.13 0.927
1.6 15 32844.44 1.891 40306.13 0.927
1.6 20 32844.44 1.891 40306.13 0.927
1.6 50 32884.22 1.897 40449.15 0.935

Table 2: Generalized additive mixed model with boosting (bGAMM) on bernoulli data averaged over
all 100 simulations

It is seen that the gamm function is very unstable when the number of predictors grows and

for all numbers of predictors estimates are hard to find. The boosting algorithms are much

more stable and msef is even better if evaluated for all simulations instead of the subset favored

by gamm. So for binary data boosting procedures dominate gamm in terms of msef . In terms of
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mseσb gamm dominates but the REML version of boosting comes close.

Exemplarily for the case p = 5 and σb = 0.4 the estimates of the smooth functions are

presented in Figure 3 for those 36 simulations, where the gamm function estimated without

numerical problems. It becomes obvious that the two boosting approaches can reproduce the

true feature of the influence functions much more precisely, with the EM version leading to

slightly better results.
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Figure 1: Boxplots of msef for gamm∗ (left), bGAMM EM(middle) and bGAMM REML (right) for p =
5, 10, 15, 20, 50 (∗ only those cases, where gamm did converge)
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Figure 2: Boxplots of mseσ for the gamm model (left), the bGAMM EM model (middle) and the bGAMM

REML model (right) for p = 5, 10, 15, 20, 50
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4.2 Poisson Data with Log-Link

The underlying model is the random intercept additive Poisson model

ηit =

p∑

j=1

fj(uitj) + bi, i = 1, . . . , 40, t = 1, . . . , 10,

E[yit] = exp(ηit) := λit yit ∼ Pois(λit)

with smooth effects given by

f1(u) = sin(u) with u ∈ [−π, π],

f2(u) = cos(u) with u ∈ [−π, 3π],

f3(u) = u2 with u ∈ [−1, 1],

f4(u) = u3 with u ∈ [−1, 1],

f5(u) = −u2 with u ∈ [−1, 1],

fj(u) = 0 with u ∈ [−π, π], for j = 6, . . . , 50.

Again we choose the different settings p = 5, 10, 15, 20, 50. For j = 1, . . . , 50 the vectors

uTit = (uit1, . . . , uit50) have been drawn independently with components following a uniform

distribution within the specified interval. The number of observations is fixed as n = 40, Ti :=

T = 10,∀i = 1, . . . , n. The random effects are specified by bi ∼ N(0, σ2
b ) with same three

scenarios as in the Poisson case.

We also use the same goodness-of-fit criteria as for the Bernoulli case and compare the

results of our bGAMM algorithm with the results achieved by using the gamm function (Wood,

2006), see Table 3.

gamm bGAMM (EM) bGAMM (REML)
σb p msef mseσb n.c. msef mseσb f.p. f.n. msef mseσb f.p. f.n.
0.4 5 21.220 0.004 0 28.617 0.050 0 0 28.598 0.005 0 0
0.4 10 26.059 0.004 39 28.158 0.033 0.01 0 28.158 0.005 0.02 0
0.4 15 27.819 0.003 89 23.927 0.100 0.04 0 23.968 0.007 0.04 0
0.4 20 33.050 0.001 95 28.259 0.027 0.04 0 28.278 0.004 0.04 0
0.4 50 79.245 0.006 89 32.522 0.029 0.09 0 30.899 0.005 0.08 0
0.8 5 19.398 0.010 0 24.293 0.122 0 0 24.310 0.009 0 0
0.8 10 21.859 0.011 48 23.827 0.097 0.01 0 23.836 0.007 0.01 0
0.8 15 36.088 0.001 96 26.524 0.151 0.01 0 26.560 0.002 0.01 0
0.8 20 36.311 0.007 95 25.704 0.015 0.02 0 25.652 0.007 0.02 0
0.8 50 75.365 0.015 95 25.258 0.177 0.06 0 23.526 0.009 0.06 0
1.6 5 11.823 0.038 2 15.301 1.224 0 0 15.283 0.042 0 0
1.6 10 14.869 0.036 57 16.229 1.287 0.14 0 16.283 0.040 0.14 0
1.6 15 14.098 0.070 99 4.478 7.212 0.22 0 4.481 0.127 0.23 0
1.6 20 - - 100 16.762 1.139 0.28 0 16.818 0.042 0.28 0
1.6 50 2043.006 2.543 99 34.449 0.963 0.46 0 27.338 0.044 0.47 0

Table 3: Generalized additive mixed model with gamm and boosting (bGAMM) on Poisson data

For completeness we give the results of the bGAMM algorithm averaged over all 100 simula-

tions in the Table 4. For Poisson data it is seen again that the gamm function is very unstable
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when the number of predictors grows. Already for ten predictors estimates are hard to find.

The boosting algorithms are much more stable and msef is again better if evaluated for all

simulations instead of the subset favored by gamm.

bGAMM (EM) bGAMM (REML)
σb p msef mseσb msef mseσb
0.4 5 28.617 0.050 28.598 0.005
0.4 10 28.597 0.050 28.732 0.005
0.4 15 28.888 0.050 28.927 0.005
0.4 20 28.863 0.050 28.869 0.005
0.4 50 29.391 0.050 28.848 0.005
0.8 5 24.293 0.122 24.310 0.009
0.8 10 24.346 0.121 24.364 0.009
0.8 15 24.360 0.121 24.377 0.009
0.8 20 24.465 0.118 24.456 0.009
0.8 50 24.899 0.113 24.464 0.009
1.6 5 15.301 1.219 15.287 0.042
1.6 10 15.666 1.184 15.688 0.042
1.6 15 16.399 1.163 16.449 0.042
1.6 20 16.762 1.139 16.818 0.042
1.6 50 18.140 0.963 17.075 0.044

Table 4: Generalized additive mixed model with boosting (bGAMM) on Poisson data averaged over all
100 simulations
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Figure 4: Boxplots of msef for the gamm model (left), the bGAMM EM model (middle) and the bGAMM

REML model (right) for p = 5, 10, 15, 20, 50
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Figure 5: Boxplots of mseσ for the gamm model (left), the bGAMM EM model (middle) and the bGAMM

REML model (right) for p = 5, 10, 15, 20, 50

5 Applications to Real Data

In the following sections we will apply our boosting method on different real data sets and

compare the results of our method with other approaches. The identification of the optimal

smoothing parameter λ has been carried out using 5-fold cross validation.

5.1 AIDs study

The data were collected within the Multicenter AIDS Cohort Study (MACS), which has fol-

lowed nearly 5000 gay or bisexual men from Baltimore, Pittsburgh, Chicago and Los Angeles

since 1984 (see Kaslow et al., 1987; Zeger and Diggle, 1994). The study includes 1809 men who

were infected with HIV when the study began and another 371 men who were seronegative at

entry and seroconverted during the followup. In our application 369 seroconverters with 2376

measurements over time are used. The interesting response variable is the number of CD4 cells

by which progression of disease may be assessed. Covariates include years since seroconversion,

packs of cigarettes a day, recreational drug use (yes/no), number of sexual partners, age and

a mental illness score (cesd). The data has been already examined in Tutz and Reithinger

(2007).

Since the forms of the effects are not known, time since seroconversion, age and the mental

illness score may be considered as unspecified additive effects. We consider the semi-parametric

mixed model with linear predictor g(µit) = ηit = ηparit +ηaddit +bi, where µit denotes the expected
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CD4 number of cells for subject i on measurement t (taken at irregular time intervals). The

parametric and nonparametric terms are

ηpar

it = β0 +drugsitβ1 +partnersitβ2 +packsitβ3, ηadd

it = α1(timeit)+α2(ageit)+α3(cesdit).

We fit an overdispersed Poisson model with natural link. The overdispersion parameter Φ is

estimated by use of Pearson residuals r̂it = (yit − µ̂it)/(v(µ̂it))
1
2 as

Φ̂ =
1

N − df

n∑

i=1

Ti∑

t=1

r̂2it, N =
n∑

i=1

Ti, (11)

where the degrees of freedom (df) correspond to the trace of the hat-matrix. The results for

the estimation of fixed effects, overdispersion parameter Φ̂ and σ̂b for the gamm function (Wood,

2006) and for the bGAMM algorithm are given in Table 5.

gamm bGAMM (EM) bGAMM (REML)

Intercept 6.485 (0.026) 6.460 6.460
Drugs 0.034 (0.023) 0.009 0.009

Partners 0.003 (0.003) 0.006 0.006
Packs of Cigarettes 0.040 (0.009) 0.005 0.005

σ̂b 0.299 0.345 0.346

Φ̂ 69.929 69.473 69.473

Table 5: Estimates for the AIDS Cohort Study MACS with gamm function (standard deviations in
brackets) and bGAMM algorithm

The main interest is in the typical time course of CD4 cell decay and the variability across

subjects (see also Zeger and Diggle, 1994). Figure 6 shows the data together with an estimated

overall smooth effect of time on CD4 cell decay derived by the gamm function. In Figure 7 the

smooth effects of time, the mental illness score and age are given for both gamm function and

bGAMM algorithm. It is seen that there is a decease in CD4 cells with time and with higher

values of the mental illness score. The gamm function estimates a very slight increase for age,

while for the bGAMM algorithm age is not selected and therefore has no effect at all.

5.2 The German Bundesliga

In the study the effect of team specific influence variables on the sportive success of the 18

soccer clubs of Germany’s first soccer division, the Bundesliga, has been investigated for the

last three seasons 2007/2008 to 2009/2010. The response variable is the number of points, on

which the league’s form table is based. Each team gets three points for wins, one point for

every draw and no points for defeats. A brief description of the team specific covariates in the
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Figure 6: Data from Multicenter AIDS Cohort Study (MACS) and smoothed time effect

data can be found in Table 6.

Covariate Description

ball possession average percentage of ball possession per game

tackle average percentage of tackles won per game

unfairness average number of unfairness points per game (1 point for yellow card,

3 points for second yellow card, 5 points for red card)

transfer spendings money spent for new players during a season (in Euro)

transfer receipts money earned through player transfers during a season (in Euro)

attendance average attendance during a season

sold out number of ticket sold outs during a season

Table 6: Description of covariates for the German Bundesliga data

Except for the variables“ball possession” and “tackles”, which were treated as parametric

terms, for all other variables unspecified additive effects were considered. Due to the very dif-

ferent ranges of values covariates have been standardized. The corresponding semi-parametric

mixed model has the form

g(µit) = ηpar

it + ηadd

it + bi,
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Figure 7: Estimated smooth effect of time, age and cesd computed with the gamm model (left), the
bGAMM EM model (middle) and the bGAMM REML model (right) for CD4 data

where µit denotes the expected number of points for soccer team i in season t. The parametric

and nonparametric terms are

ηpar

it = β0 + ball possessionitβ1 + tacklesitβ2

ηadd

it = α1(transfer spendingit) + α2(transfer receiptsit) + α3(unfairnessit)

+α4(attendanceit) + α5(sold outit).

Again we fit an overdispersed Poisson model with natural link while the overdispersion param-

eter Φ is estimated using (11).

The results for the estimation of fixed effects, overdispersion parameter Φ̂ and σ̂b for the
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gamm function and for the bGAMM algorithm are given in Table 7. Both boosting functions esti-

gamm bGAMM (EM) bGAMM (REML)

intercept 3.816 (0.025) 4.023 4.027
ball possession 0.018 (0.041) -0.148 -0.157
tackles 0.005 (0.039) -0.053 -0.056
σ̂b 0.000 0.349 0.247

Φ̂ 1.4114 1.039 1.065

Table 7: Estimates for the German Bundesliga data with gamm function (standard deviations in
brackets) and bGAMM algorithm

mate dispersion parameters not far away from one, so that the Poisson model seems adequate.

The gamm function provides a very low standard deviation (σ̂b=0.000014) of the random inter-

cepts, while the bGAMM models lead to results that support the application of a random effects

model, indicating that each soccer team has an individual bases level of points.

In Figure 8 the five smooth effects are presented. It becomes obvious, that all three ap-

proaches estimate similar functions, but the two boosting approaches exclude the variable

“transfer receipts” from the model. Furthermore the smooth effect of the variable “transfer

spendings” as well as the strongly positive effect of the variable “attendance” on the number

of points are remarkable.

6 Concluding Remarks

Variable selection methods have been proposed that allow to extract the relevant predictors

in generalized additive mixed models. The methods are shown to work in high-dimensional

settings and turn out to be very stable. Performance suffers hardly when the number of noise

variables grows.
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Figure 8: Estimated smooth effects computed with the gamm model (left), the bGAMM EM model
(middle) and the bGAMM REML model (right) for the German Bundesliga data
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Appendix

A Reparametrization of Penalized B-Splines

Suppose a function f can be represented by a k B-spline basis with functions Bi(x; d) of degree

d,

f(x) =
k∑

i=1

αiBi(x; d), (12)

where αi are unknown weight parameters. Let

f(xi) = Bααα, where B =




B1(xi1; d) . . . Bk(xi1; d)
...

...

B1(xin; d) . . . Bk(xin; d)


 (13)

be the matrix of evaluated basis functions called B-spline design matrix. To control the

roughness or “wiggliness” of the estimated function in (12) a penalty term is added to the

log-likelihood, e.g. the common penalty J(ααα) = αααTKααα. We choose K = (∆∆∆d)T∆∆∆d, where ∆∆∆d

denotes the difference operator matrix of degree d, penalizing the differences between neighbor-

ing coefficients αi in order to avoid sudden “jumps” in the estimated function; see for example

Whittaker (1923), Eilers (1995) or Eilers and Marx (1996) for the difference penalty. Fahrmeir

et al. (2004) suggested a decomposition of the P-spline coefficients into an unpenalized part

and a penalized part:

ααα = Tααα0 + Pαααp,

where ααα0 represents the unpenalized part and αααp the penalized part of the spline coefficient

vector. For the construction of the matrices T and P one uses that the penalty matrix K can

be decomposed into K = (∆∆∆d)T∆∆∆d, where ∆∆∆d has full row rank (k− d). Then the matrix P is

given by

P =
(
∆∆∆d(∆∆∆d)T

)−1
(∆∆∆d)T .

According to Green (1987) the requirements ∆∆∆dT = 0 and T∆∆∆d = 0 have to hold and the

matrix [∆∆∆d,T] has to be nonsingular. As a consequence, T is a (k × d) matrix representing a

basis of the nullspace of K. For the difference penalty of degree d the basis is straightforward,

consisting of all monomials up to degree d− 1 defined by the knots of the B-spline. With the

B-spline design matrix from equation (13) one obtains.

Bααα = B(Tααα0 + Pαααp) = Xuααα0 + Zpαααp,
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and the penalty term simplifies to

J(ααα) = αααTKααα = αααT (∆∆∆d)T∆∆∆dααα

= (Tααα0 + Pαααp)
T (∆∆∆d)T∆∆∆d(Tααα0 + Pαααp)

= αααTpP
T (∆∆∆d)T∆∆∆dPαααp = αααTpαααp.

Thus, all in all, with α̃ααT := (αααT0 ,ααα
T
p ), ΦΦΦ := [Xu,Zp] and K̃ := Diag(0, . . . , 0, 1, . . . , 1) being

a diagonal matrix with zeros corresponding to ααα0 and ones corresponding to αααp, one obtains

J(ααα) = α̃ααT K̃α̃αα, and Bααα = ΦΦΦα̃αα.

B Reparametrization in semiparametric models

In this section a small additional step to the reparametrization from Appendix A is explained,

that becomes necessary if the model is semiparametric, with the parametric term containing

the intercept. Notice that the (k × d)-matrix Xu from Appendix A has the general form

Xu =




1 ξ1,1 . . . ξ1,d−1

1
...

...
...

...
...

1 ξk,1 . . . ξk,d−1



,

where the first column with ones refers to the level of the function in (12). If the parametric

term of the model already contains the intercept, the estimated function f(x) must be centered

around zero in order to avoid identification problems. This can be achieved by dropping the

first column of the matrix Xu. Then the dimensions of Xu and ΦΦΦ decrease to (n × (d − 1))

and to (n× (k− 1)), respectively. As a consequence the first value of ααα0, representing the level

of the estimated function, doesn’t have to be estimated anymore and also α̃αα decreases by one

dimension.
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