33 research outputs found

    The performance of phaselocked loops for frequency control in single sideband land mobile radio receivers.

    Get PDF
    SIGLELD:D49169/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Low jitter phase-locked loop clock synthesis with wide locking range

    Get PDF
    The fast growing demand of wireless and high speed data communications has driven efforts to increase the levels of integration in many communications applications. Phase noise and timing jitter are important design considerations for these communications applications. The desire for highly complex levels of integration using low cost CMOS technologies works against the minimization of timing jitter and phase noise for communications systems which employ a phase-locked loop for frequency and clock synthesis with on-chip VCO. This dictates an integrated CMOS implementation of the VCO with very low phase noise performance. The ring oscillator VCOs based on differential delay cell chains have been used successfully in communications applications, but thermal noise induced phase noise have to be minimized in order not to limit their applicability to some applications which impose stringent timing jitter and phase noise requirements on the PLL clock synthesizer. Obtaining lower timing jitter and phase noise at the PLL output also requires the minimization of noise in critical circuit design blocks as well as the optimization of the loop bandwidth of the PLL. In this dissertation the fundamental performance limits of CMOS PLL clock synthesizers based on ring oscillator VCOs are investigated. The effect of flicker and thermal noise in MOS transistors on timing jitter and phase noise are explored, with particular emphasis on source coupled NMOS differential delay cells with symmetric load elements. Several new circuit architectures are employed for the charge pump circuit and phase-frequency detector (PFD) to minimize the timing jitter due to the finite dead zone in the PFD and the current mismatch in the charge pump circuit. The selection of the optimum PLL loop bandwidth is critical in determining the phase noise performance at the PLL output. The optimum loop bandwidth and the phase noise performance of the PLL is determined using behavioral simulations. These results are compared with transistor level simulated results and experimental results for the PLL clock synthesizer fabricated in a 0.35 µm CMOS technology with good agreement. To demonstrate the proposed concept, a fully integrated CMOS PLL clock synthesizer utilizing integer-N frequency multiplier technique to synthesize several clock signals in the range of 20-400 MHz with low phase noise was designed. Implemented in a standard 0.35-µm N-well CMOS process technology, the PLL achieves a period jitter of 6.5-ps (rms) and 38-ps (peak-to-peak) at 216 MHz with a phase noise of -120 dBc/Hz at frequency offsets above 10 KHz. The specific research contributions of this work include (1) proposing, designing, and implementing a new charge pump circuit architecture that matches current levels and therefore minimizes one source of phase noise due to fluctuations in the control voltage of the VCO, (2) an improved phase-frequency detector architecture which has improved characteristics in lock condition, (3) an improved ring oscillator VCO with excellent thermal noise induced phase noise characteristics, (4) the application of selfbiased techniques together with fixed bias to CMOS low phase noise PLL clock synthesizer for digital video communications ,and (5) an analytical model that describes the phase noise performance of the proposed VCO and PLL clock synthesizer

    Design of a microprocessor based instrumentation module for signal processing applications

    Get PDF
    Call number: LD2668 .T4 1984 R35Master of Scienc

    Automated transfer function measurements

    Get PDF
    Call number: LD2668 .T4 EECE 1989 R36Master of ScienceElectrical and Computer Engineerin

    DESIGN AND CHARACTERIZATION OF LOW-POWER LOW-NOISE ALLDIGITAL SERIAL LINK FOR POINT-TO-POINT COMMUNICATION IN SOC

    Get PDF
    The fully-digital implementation of serial links has recently emerged as a viable alternative to their classical analogue counterpart. Indeed, reducing the analogue content in favour of expanding the digital content becomes more attractive due to the ability to achieve less power consumption, less sensitivity to the noise and better scalability across multiple technologies and platforms with inconsiderable modifications. In addition, describing the circuit in hardware description languages gives it a high flexibility to program all design parameters in a very short time compared with the analogue designs which need to be re-designed at transistor level for any parameter change. This can radically reduce cost and time-to-market by saving a significant amount of development time. However, beside these considerable advantages, the fully-digital architecture poses several design challenges

    Analysis of Offset Pulse Position Modulation

    Get PDF
    This work presents the performance analysis of the offset pulse position modulation (PPM) scheme using graded-index plastic optical fibre with a Gaussian impulse response. The aim of this analysis is to predict how sensitivity, error, number of required photons, threshold voltage, and the effect of inter-symbol interference will change with the change in the number of data bits encoded at a rate of 1 Gbit/s. An information theory analysis is presented in detail and also the band-utilization efficiency is determined. Results are compared to equivalent digital PPM and multiple PPM schemes and it is also shown that offset PPM gives an advantage over on-off keying (OOK). Bit error rate (BER) analysis has been presented numerically. The errors due to different coding techniques are compared. It has also been shown that offset pulse position modulation is more power efficient than multiple pulse position modulation. The spectral analysis of offset pulse position modulation coding scheme has been carried out. For an offset PPM sequence the spectral characteristics is presented both theoretically and numerically. The results show strong frequency components at the frame rate and, if return-to-zero pulses are used, the slot rate. Slot synchronisation has been taken into consideration for the first time as offset PPM spectrum exhibits discrete slot rate component. The effect of pulse shaping and modulating index on the spectrum has been shown. The dependency of slot component on the pulse shape is examined. The results show that the frame synchronisation is possible for offset PPM as this coding exhibits a strong frame rate component. A comparison of spectral characteristics has been presented considering digital, multiple and shortened PPM. For ease of implementation an offset PPM coder has been designed. In this work an efficient clock recovery topology is presented for offset PPM data sequence at the receiver end. For clock recovery, a phase locked loop is designed. Data recovery has also been presented. It is shown that a frame clock can be extracted from the data sequence that yields the possibility of frame synchronization. A detailed noise analysis has been performed for random offset PPM input. It has been shown that the proposed clock recovery system is also effective for extracting other data sequence. To elucidate, a multiple Pulse Position Modulation (MPPM) data sequence is considered. The MPPM data sequence has also been synchronised with the recovered clock. A noise analysis is carried out for multiple PPM
    corecore