134,087 research outputs found

    A Regularized Graph Layout Framework for Dynamic Network Visualization

    Full text link
    Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material (animations and MATLAB toolbox) available at http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201

    Geovisualization to support the exploration of large health and demographic survey data

    Get PDF
    BACKGROUND: Survey data are increasingly abundant from many international projects and national statistics. They are generally comprehensive and cover local, regional as well as national levels census in many domains including health, demography, human development, and economy. These surveys result in several hundred indicators. Geographical analysis of such large amount of data is often a difficult task and searching for patterns is particularly a difficult challenge. Geovisualization research is increasingly dealing with the exploration of patterns and relationships in such large datasets for understanding underlying geographical processes. One of the attempts has been to use Artificial Neural Networks as a technology especially useful in situations where the numbers are vast and the relationships are often unclear or even hidden. RESULTS: We investigate ways to integrate computational analysis based on a Self-Organizing Map neural network, with visual representations of derived structures and patterns in a framework for exploratory visualization to support visual data mining and knowledge discovery. The framework suggests ways to explore the general structure of the dataset in its multidimensional space in order to provide clues for further exploration of correlations and relationships. CONCLUSION: In this paper, the proposed framework is used to explore a demographic and health survey data. Several graphical representations (information spaces) are used to depict the general structure and clustering of the data and get insight about the relationships among the different variables. Detail exploration of correlations and relationships among the attributes is provided. Results of the analysis are also presented in maps and other graphics

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval
    corecore