8,843 research outputs found

    The Glasgow raspberry pi cloud: a scale model for cloud computing infrastructures

    Get PDF
    Data Centers (DC) used to support Cloud services often consist of tens of thousands of networked machines under a single roof. The significant capital outlay required to replicate such infrastructures constitutes a major obstacle to practical implementation and evaluation of research in this domain. Currently, most research into Cloud computing relies on either limited software simulation, or the use of a testbed environments with a handful of machines. The recent introduction of the Raspberry Pi, a low-cost, low-power single-board computer, has made the construction of a miniature Cloud DCs more affordable. In this paper, we present the Glasgow Raspberry Pi Cloud (PiCloud), a scale model of a DC composed of clusters of Raspberry Pi devices. The PiCloud emulates every layer of a Cloud stack, ranging from resource virtualisation to network behaviour, providing a full-featured Cloud Computing research and educational environment

    SimGrid: a Sustained Effort for the Versatile Simulation of Large Scale Distributed Systems

    Full text link
    In this paper we present Simgrid, a toolkit for the versatile simulation of large scale distributed systems, whose development effort has been sustained for the last fifteen years. Over this time period SimGrid has evolved from a one-laboratory project in the U.S. into a scientific instrument developed by an international collaboration. The keys to making this evolution possible have been securing of funding, improving the quality of the software, and increasing the user base. In this paper we describe how we have been able to make advances on all three fronts, on which we plan to intensify our efforts over the upcoming years.Comment: 4 pages, submission to WSSSPE'1

    Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things

    Get PDF
    The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.Ministerio de Economía y Competitividad TIN2017-82113-C2-1-RMinisterio de Economía y Competitividad RTI2018-098062-A-I00European Union’s Horizon 2020 No. 754489Science Foundation Ireland grant 13/RC/209

    VM-MAD: a cloud/cluster software for service-oriented academic environments

    Full text link
    The availability of powerful computing hardware in IaaS clouds makes cloud computing attractive also for computational workloads that were up to now almost exclusively run on HPC clusters. In this paper we present the VM-MAD Orchestrator software: an open source framework for cloudbursting Linux-based HPC clusters into IaaS clouds but also computational grids. The Orchestrator is completely modular, allowing flexible configurations of cloudbursting policies. It can be used with any batch system or cloud infrastructure, dynamically extending the cluster when needed. A distinctive feature of our framework is that the policies can be tested and tuned in a simulation mode based on historical or synthetic cluster accounting data. In the paper we also describe how the VM-MAD Orchestrator was used in a production environment at the FGCZ to speed up the analysis of mass spectrometry-based protein data by cloudbursting to the Amazon EC2. The advantages of this hybrid system are shown with a large evaluation run using about hundred large EC2 nodes.Comment: 16 pages, 5 figures. Accepted at the International Supercomputing Conference ISC13, June 17--20 Leipzig, German

    CERN Storage Systems for Large-Scale Wireless

    Get PDF
    The project aims at evaluating the use of CERN computing infrastructure for next generation sensor networks data analysis. The proposed system allows the simulation of a large-scale sensor array for traffic analysis, streaming data to CERN storage systems in an efficient way. The data are made available for offline and quasi-online analysis, enabling both long term planning and fast reaction on the environment

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability
    corecore