3 research outputs found

    Theoretical study of thermoelectric cooling system performance

    Get PDF
    This work provides a theoretical investigation to study the effect of different operational parameters on theperformance of TE cooling system including the system COP and the rate of heat transfer. The parametersinvestigated are, the applied input power, inlet working fluid velocity, the arrangement of utilized TECs modules andfluid type. The geometry is created with ANSYS multi-physics software as a two-dimensional base case, it isconsisted from two attached horizontal ducts of length (520 mm) and (560 mm), the interface surface between the twoducts contains three thermoelectric modules (4 mm height by 40 mm wide and 40 mm length). The distance betweentwo consecutive thermoelectric modules (150 mm), the inlet and outlet duct diameter (15 mm) and the height of eachduct (10 cm), the inlet voltage to thermoelectric modules ranges from 8.0 V to 12 V and the water inlet velocity to thetwo ducts from 0.001 to 0.01 m/s. Theoretical results showed that the overall COP of TE cooling system is increasedwith the applied input power up to 8.0 W then it decreases with input power up to 18 W after that it takes nearly aconstant value, a noticeable enhancement in the COP is found when the three TECs are in use (Case 10) and the COPof TE cooling system using pure water and nanofluid with 0.05% of nanoparticles as coolants takes the maximumvalue

    Energy efficient active cooling of integrated circuits using embedded thermoelectric devices

    Get PDF
    With technology scaling, the amount of transistors on a single chip doubles itself every 18 months giving rise to increased power density levels. This has directly lead to a rapid increase of thermal induced issues on a chip and effective methodologies of removing the heat from the system has become the order of the day. Thermoelectric (TE) devices have shown promise for on-demand cooling of ICs. However, the additional energy required for cooling remains a challenge for the successful deployment of these devices. This thesis presents a closed loop control system that dynamically switches a TE module between Peltier and Seebeck modes depending on chip temperature. The autonomous system harvests energy during regular operation and uses the harvested energy to cool during high power operation. The system is demonstrated using a commercial thin-film TE device, an integrated boost regulator and few off chip components. The feasibility of the integration of the TEM and the automated mode switching within the microprocessor package is also evaluated. With continuous usage of thermoelectric modules, it starts to degrade over time due to thermal and mechanical induced stress which in turn reduces the cooling performance over time. Impact of thermal cycling on thermoelectric cooling performance over time is evaluated using the developed full chip package model.M.S

    Thermal and QoS-Aware Embedded Systems

    Full text link
    While embedded systems such as smartphones and smart cars become essential parts of our lives, they face urgent thermal challenges. Extreme thermal conditions (i.e., both high and low temperatures) degrade system reliability, even risking safety; devices in the cold environments unexpectedly go offline, whereas extremely high device temperatures can cause device failures or battery explosions. These thermal limits become close to the norm because of ever-increasing chip power densities and application complexities. Embedded systems in the wild, however, lack adaptive and effective solutions to overcome such thermal challenges. An adaptive thermal management solution must cope with various runtime thermal scenarios under a changing ambient temperature. An effective solution requires the understanding of the dynamic thermal behaviors of underlying hardware and application workloads to ensure thermal and application quality-of-service (QoS) requirements. This thesis proposes a suite of adaptive and effective thermal management solutions to address different aspects of real-world thermal challenges faced by modern embedded systems. First, we present BPM, a battery-aware power management framework for mobile devices to address the unexpected device shutoffs in cold environments. We develop BPM as a background service that characterizes and controls real-time battery behaviors to maintain operable conditions even in cold environments. We then propose eTEC, building on the thermoelectric cooling solution, which adaptively controls cooling and computational power to avoid mobile devices overheating. For the real-time embedded systems such as cars, we present RT-TRM, a thermal-aware resource management framework that monitors changing ambient temperatures and allocates system resources to individual tasks. Next, we target in-vehicle vision systems running on CPUs–GPU system-on-chips and develop CPU–GPU co-scheduling to tackle thermal imbalance across CPUs caused by GPU heat. We evaluate all of these solutions using representative mobile/automotive platforms and workloads, demonstrating their effectiveness in meeting thermal and QoS requirements.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153350/1/ymoonlee_1.pd
    corecore