4 research outputs found

    Using an event-based approach to improve the multimodal rendering of 6DOF virtual contact

    Full text link

    A Framework for Multi-Contact Multi-Body Dynamic Simulation and Haptic Display

    No full text
    We present a general framework for the dynamic simulation and haptic exploration of complex virtual environments. This work builds on previous developments in simulation, haptics, and operational space control. The relations between the dynamic models used in simulation and the models originally developed for robotic control are also presented. This framework has been used to develop a simulator that can model complex interaction between generalized articulated mechanical systems and permit direct "hands-on" interaction with the virtual environment through a haptic interface

    Efficient motion planning using generalized penetration depth computation

    Get PDF
    Motion planning is a fundamental problem in robotics and also arises in other applications including virtual prototyping, navigation, animation and computational structural biology. It has been extensively studied for more than three decades, though most practical algorithms are based on randomized sampling. In this dissertation, we address two main issues that arise with respect to these algorithms: (1) there are no good practical approaches to check for path non-existence even for low degree-of-freedom (DOF) robots; (2) the performance of sampling-based planners can degrade if the free space of a robot has narrow passages. In order to develop effective algorithms to deal with these problems, we use the concept of penetration depth (PD) computation. By quantifying the extent of the intersection between overlapping models (e.g. a robot and an obstacle), PD can provide a distance measure for the configuration space obstacle (C-obstacle). We extend the prior notion of translational PD to generalized PD, which takes into account translational as well as rotational motion to separate two overlapping models. Moreover, we formulate generalized PD computation based on appropriate model-dependent metrics and present two algorithms based on convex decomposition and local optimization. We highlight the efficiency and robustness of our PD algorithms on many complex 3D models. Based on generalized PD computation, we present the first set of practical algorithms for low DOF complete motion planning. Moreover, we use generalized PD computation to develop a retraction-based planner to effectively generate samples in narrow passages for rigid robots. The effectiveness of the resulting planner is shown by alpha puzzle benchmark and part disassembly benchmarks in virtual prototyping

    Analyse, commande et intégration d'un mécanisme parallèle entraîné par des câbles pour la réalisation d'une interface haptique comme métaphore de navigation dans un environnement virtuel

    Get PDF
    Un domaine de la recherche en ingénierie des systèmes est de développer des systèmes supervisés semi-autonomes qui interagissent à un très haut niveau avec l'humain. Ces systèmes intelligents ont les capacités d'analyser et de traiter certaines informations pour produire un comportement général observable par les capacités sensorielles et temporelles de l'humain. Il est donc nécessaire de définir un environnement créatif qui interface efficacement l'humain aux informations pour rendre de nouvelles expériences multi-sensorielles optimisant et facilitant la prise de décision. En d'autres mots, il est possible de définir un système multi-sensoriel par sa capacité à augmenter l'optimisation de la prise de décision à l'aide d'une interface qui définit un environnement adapté à l'humain. Un système haptique dans un environnement virtuel incluant une collaboration et une interaction entre l'humain, les mécanismes robotisés et la physique de la réalité virtuelle est un exemple. Un système haptique doit gérer un système dynamique non-linéaire sous-contraint et assurer sa stabilité tout en étant transparent à l'humain. La supervision de l'humain permet d'accomplir des tâches précises sans se soucier de la complexité de la dynamique d'interactions alors que le système gère les différents problèmes antagonistes dont de stabilité (délai de la communication en réseau, stabilité des rendus, etc.), de transparence et de performance. Les travaux de recherche proposés présentent un système multi-sensoriel visuo-haptique qui asservisse l'interaction entre l'humain, un mécanisme et la physique de l'environnement virtuel avec une commande bilatérale. Ce système permet à l'humain de réaliser des fonctions ou des missions de haut niveau sans que la complexité de la dynamique d'interaction limite la prise de décision. Plus particulièrement, il sera proposé de réaliser une interface de locomotion pour des missions de réadaptation et d'entraînement. Ce projet, qui est nommé NELI (Network Enabled Locomotion Interface), est divisé en plusieurs sous-systèmes dont le mécanisme entraîné par des câbles nommé CDLI ( Cable Driven Locomotion Interface ), le système asservi avec une commande bilatérale qui assure le rendu de la locomotion, la réalité virtuelle qui inclut la physique de l'environnement, le rendu haptique et le rendu visuel. Dans un premier temps, cette thèse propose une méthode qui assure la qualité de la réponse de la transmission en augmentant la transparence dynamique de l'asservissement articulaire d'une manière automatique. Une approche d'optimisation, basée sur une amélioration des Extremum Seeking Tuning, permet d'ajuster adéquatement les paramètres des régulateurs et définit le critère de l'assurance qualité dans le cas d'une production massive. Cet algorithme est ensuite utilisé, pour étudier le rendu d'impédance avec l'aide de la modélisation d'un câble et de l'enrouleur. Cette modélisation permet de définir un asservissement articulaire hybride qui est utilisé dans la commande hybride cartésienne afin d'assurer le rendu haptique. Dans un troisième temps, dans un contexte de sécurité, la gestion des interférences entre les pièces mécaniques de l'interface de locomotion est décrite avec une méthode d'estimation des collisions des câbles. Une démonstration des interférences entre les câbles de deux plates-formes est simulée démontrant la faisabilité de l'approche. Finalement, la définition d'un moteur physique par un rendu haptique hybride au niveau de la commande cartésienne est présentée en considérant la géométrie des points de contact entre le modèle du pied virtuel et un objet virtuel. Cette approche procure la stabilité d'interaction recherchée lors de la simulation d'un contact infiniment rigide. Un robot marcheur de marque Kondo est embarqué sur l'interface de locomotion pour interagir avec les objets virtuels. Les résultats de la marche du robot dans l'environnement virtuel concrétisent le projet et servent de démonstrateur technologique
    corecore