270 research outputs found

    Self-similarity and wavelet forms for the compression of still image and video data

    Get PDF
    This thesis is concerned with the methods used to reduce the data volume required to represent still images and video sequences. The number of disparate still image and video coding methods increases almost daily. Recently, two new strategies have emerged and have stimulated widespread research. These are the fractal method and the wavelet transform. In this thesis, it will be argued that the two methods share a common principle: that of self-similarity. The two will be related concretely via an image coding algorithm which combines the two, normally disparate, strategies. The wavelet transform is an orientation selective transform. It will be shown that the selectivity of the conventional transform is not sufficient to allow exploitation of self-similarity while keeping computational cost low. To address this, a new wavelet transform is presented which allows for greater orientation selectivity, while maintaining the orthogonality and data volume of the conventional wavelet transform. Many designs for vector quantizers have been published recently and another is added to the gamut by this work. The tree structured vector quantizer presented here is on-line and self structuring, requiring no distinct training phase. Combining these into a still image data compression system produces results which are among the best that have been published to date. An extension of the two dimensional wavelet transform to encompass the time dimension is straightforward and this work attempts to extrapolate some of its properties into three dimensions. The vector quantizer is then applied to three dimensional image data to produce a video coding system which, while not optimal, produces very encouraging results

    DCT Implementation on GPU

    Get PDF
    There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop operating systems that handle the GPU to full capacity. GPUs offer a very efficient environment for many image processing applications. This thesis explores the processing power of GPUs for digital image compression using Discrete cosine transform

    Detectability model for the evaluation of lossy compression methods on radiographic images

    Get PDF
    The purpose of image data compression is to represent data efficiently without loss of information. This involves identification and removal of unnecessary information. Uncompressed image data is typically represented in such a way so that it is highly redundant. Need for data reduction arises due to limitation on storage space or transmission time. Although the storage capacities of magnetic media increases, the demand for data compression has been growing steadily. The Nuclear Regulatory Commission requires that the radiographs be stored for 100 years. The film radiograph degrades due to aging. To avoid this generally the radiograph is digitized between 35 and 100 micron spatial resolution and 12 bits. For a 11x14 inch radiograph this requires on the order of 30 Mbytes for storage. Data compression is necessary to increase the number of images that can be stored. Various factors used in the evaluation of compression are the amount of compression provided, speed of compression and decompression, memory requirements and the mean square error (MSE). Since the radiographs are viewed by the human eye, it is very important that the compression does not introduce any artifacts that are visible. It is necessary to evaluate the visual impact of the error due to compression. In this thesis, a method is presented which calculates the visual distortion of the compressed image as compared to the original image. This method is based on a model of the human eye

    Data compression for full motion video transmission

    Get PDF
    Clearly transmission of visual information will be a major, if not dominant, factor in determining the requirements for, and assessing the performance of the Space Exploration Initiative (SEI) communications systems. Projected image/video requirements which are currently anticipated for SEI mission scenarios are presented. Based on this information and projected link performance figures, the image/video data compression requirements which would allow link closure are identified. Finally several approaches which could satisfy some of the compression requirements are presented and possible future approaches which show promise for more substantial compression performance improvement are discussed

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Digital image compression

    Get PDF

    Survey of Hybrid Image Compression Techniques

    Get PDF
    A compression process is to reduce or compress the size of data while maintaining the quality of information contained therein. This paper presents a survey of research papers discussing improvement of various hybrid compression techniques during the last decade. A hybrid compression technique is a technique combining excellent properties of each group of methods as is performed in JPEG compression method. This technique combines lossy and lossless compression method to obtain a high-quality compression ratio while maintaining the quality of the reconstructed image. Lossy compression technique produces a relatively high compression ratio, whereas lossless compression brings about high-quality data reconstruction as the data can later be decompressed with the same results as before the compression. Discussions of the knowledge of and issues about the ongoing hybrid compression technique development indicate the possibility of conducting further researches to improve the performance of image compression method

    Recent advances in coding theory for near error-free communications

    Get PDF
    Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression
    corecore