714 research outputs found

    Sinogram Restoration for Low-Dosed X-Ray Computed Tomography Using Fractional-Order Perona-Malik Diffusion

    Get PDF
    Existing integer-order Nonlinear Anisotropic Diffusion (NAD) used in noise suppressing will produce undesirable staircase effect or speckle effect. In this paper, we propose a new scheme, named Fractal-order Perona-Malik Diffusion (FPMD), which replaces the integer-order derivative of the Perona-Malik (PM) Diffusion with the fractional-order derivative using G-L fractional derivative. FPMD, which is a interpolation between integer-order Nonlinear Anisotropic Diffusion (NAD) and fourth-order partial differential equations, provides a more flexible way to balance the noise reducing and anatomical details preserving. Smoothing results for phantoms and real sinograms show that FPMD with suitable parameters can suppress the staircase effects and speckle effects efficiently. In addition, FPMD also has a good performance in visual quality and root mean square errors (RMSE)

    Split Bregman Iteration Algorithm for Image Deblurring Using Fourth-Order Total Bounded Variation Regularization Model

    Get PDF
    We propose a fourth-order total bounded variation regularization model which could reduce undesirable effects effectively. Based on this model, we introduce an improved split Bregman iteration algorithm to obtain the optimum solution. The convergence property of our algorithm is provided. Numerical experiments show the more excellent visual quality of the proposed model compared with the second-order total bounded variation model which is proposed by Liu and Huang (2010)

    TV+TV 2

    Get PDF
    In order to restore the high quality image, we propose a compound regularization method which combines a new higher-order extension of total variation (TV+TV2) and a nonconvex sparseness-inducing penalty. Considering the presence of varying directional features in images, we employ the shearlet transform to preserve the abundant geometrical information of the image. The nonconvex sparseness-inducing penalty approach increases robustness to noise and image nonsparsity. In what follows, we present the numerical solution of the proposed model by employing the split Bregman iteration and a novel p-shrinkage operator. And finally, we perform numerical experiments for image denoising, image deblurring, and image reconstructing from incomplete spectral samples. The experimental results demonstrate the efficiency of the proposed restoration method for preserving the structure details and the sharp edges of image

    A combined first and second order variational approach for image reconstruction

    Full text link
    In this paper we study a variational problem in the space of functions of bounded Hessian. Our model constitutes a straightforward higher-order extension of the well known ROF functional (total variation minimisation) to which we add a non-smooth second order regulariser. It combines convex functions of the total variation and the total variation of the first derivatives. In what follows, we prove existence and uniqueness of minimisers of the combined model and present the numerical solution of the corresponding discretised problem by employing the split Bregman method. The paper is furnished with applications of our model to image denoising, deblurring as well as image inpainting. The obtained numerical results are compared with results obtained from total generalised variation (TGV), infimal convolution and Euler's elastica, three other state of the art higher-order models. The numerical discussion confirms that the proposed higher-order model competes with models of its kind in avoiding the creation of undesirable artifacts and blocky-like structures in the reconstructed images -- a known disadvantage of the ROF model -- while being simple and efficiently numerically solvable.Comment: 34 pages, 89 figure
    • …
    corecore