2 research outputs found

    An efficient multiple precision floating-point Multiply-Add Fused unit

    Get PDF
    Multiply-Add Fused (MAF) units play a key role in the processor's performance for a variety of applications. The objective of this paper is to present a multi-functional, multiple precision floating-point Multiply-Add Fused (MAF) unit. The proposed MAF is reconfigurable and able to execute a quadruple precision MAF instruction, or two double precision instructions, or four single precision instructions in parallel. The MAF architecture features a dual-path organization reducing the latency of the floating-point add (FADD) instruction and utilizes the minimum number of operating components to keep the area low. The proposed MAF design was implemented on a 65 nm silicon process achieving a maximum operating frequency of 293.5 MHz at 381 mW power

    A Floating Point Multiplier Performing IEEE Rounding and Addition in Parallel

    No full text
    In the conventional floating point multipliers, the rounding stage is usually constructed by using a high speed adder for the increment operation, increasing the overall execution time and occupying a large amount of chip area. Furthermore, it may accompany additional execution time and hardware components for renormalization which may occur by an overflow from the rounding operation. A floating-point multiplier performing addition and IEEE rounding in parallel is designed by optimizing the operational flow based on the characteristics of floating point multiplication operation. A hardware model for the floating point multiplier is proposed and its operational model is algebraically analyzed in this research. The floating point multiplier proposed does not require any additional execution time nor any high speed adder for rounding operation. In addition, the renormalization step is not required because the rounding step is performed prior to the normalization operation. Thus, performan..
    corecore