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Abstract

Multiply-Add Fused (MAF) units play a key role in the processor’s per-
formance for a variety of applications. The objective of this paper is to
present a multi-functional, multiple precision floating-point Multiply-Add
Fused (MAF) unit. The proposed MAF is reconfigurable and able to execute
a quadruple precision MAF instruction, or two double precision instructions,
or four single precision instructions in parallel. The MAF architecture fea-
tures a dual-path organization reducing the latency of the floating-point add
(FADD) instruction and utilizes the minimum number of operating compo-
nents to keep the area low. The proposed MAF design was implemented on
a 65nm silicon process achieving a maximum operating frequency of 293.5
MHz at 381 mW power.
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1. Introduction

Widely used applications such as graphics, transforms, digital filters, to
name a few, impose the need for Floating-Point calculations, which conse-
quently are a feature of all high performance computers, digital signal proces-
sors (DSPs) and graphic accelerators [1], [2], [3], [4]. Moreover, applications
in the area of 3D graphics require the parallel execution of floating point
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operations, which usually involve operands with single and/or double preci-
sion format. To meet these demands, a significant number of novel processor
designs provides Floating-Point Units (FPUs), which support not only single
but also double precision operations.

While the two most common floating-point formats, namely single and
double precision, are satisfactory for the vast majority of computational ap-
plications, there are a few emerging applications where they are not adequate.
Examples have been identified in the fields of climate modeling and compu-
tational physics [6], [7], [8], among others, that require even higher precision.
To support such applications, IEEE has now included a standard for 128-bit
(”quad”) precision as part of its IEEE 754-2008 Standard for Floating-Point
Arithmetic [10]. Quadruple precision computations can be handled either
by software or hardware, but hardware solutions are more effective in terms
of performance. Most of the aforementioned applications involve algorithms
utilizing the (A× B) + C single-instruction equation, which is realized in
general purpose processors (GPPs) by combining a floating-point multiplier
and a floating-point adder into a Multiply-Add Fused (MAF) unit. Due to
the importance of MAF instructions, many GPPs include embedded MAF
units to speed-up the execution of SIMD instructions, while others use them
to replace entirely the floating-point adder and multiplier units [11], [12],
[13]. Furthermore, the importance of combining high precision floating point
operations and the MAF instruction can be assessed by the efforts of major
manufacturers towards providing commercially available solutions. Notable
examples are first, the AMD “Bulldozer” microarchitecture which provides
two 128-bit MAF cores per module, supporting single, double and extended
precision format [14]; second, the IBM z13 microprocessor which performs
MAF instructions for single, double and quadruple precision formats [15].

Aiming at improving the MAF performance, this paper presents a multi-
functional, multiple precision MAF architecture based on a dual-path orga-
nization, which operates efficiently in quadruple, double or single precision.
The proposed design can perform one quadruple precision MAF operation,
or two double precision operations in parallel, or four single precision oper-
ations in parallel. Moreover, it can also perform –in each precision mode–
multiple stand-alone multiply or add operations.

The motivation for this work was first, to present a MAF architecture
supporting a variety of functions without significantly increasing area and
delay; second, to investigate how the dual-path algorithm can efficiently be
used to provide a MAF design with multiple functionalities; and third, to
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evaluate its performance by identifying the hardware cost and the critical
path delays. For sake of comparison, this paper also presents the synthesis
results of implementing four MAF architectures by using the same technology
with the proposed MAF: first, a typical double precision MAF architecture;
second, a dual-mode, dual-path MAF unit that operates in both double and
single precision; third, a typical quadruple precision; and fourth, a multi-
block design including a typical quadruple precision MAF and two dual-mode
dual-path MAF units.

The paper is organized as follows: Section 2 reviews the related work in
the area of floating-point Multiply-Add Fused units. Section 3 describes the
structure of a conventional MAF unit. Section 4 presents the architecture
of the proposed multiple precision floating-point MAF unit and describes in
detail the basic modules of the MAF design. Section 5 shows the area and
delay results and finally, Section 6 concludes the paper.

2. Related Work

The Fused Multiply-Add unit has been introduced in the IBM POWER1
processor (1990), also known as RS/6000 [16]. Since then, several designs
have been proposed and realized in an effort to improve the efficiency of
the MAF architecture. The authors of [17] compare the design complexity
of single or dual-pass (through the multiplier array) when realizing a fused
multiply-add floating-point unit. In [18] a MAF floating-point unit with
signed digit addition is presented: a signed digit addition along with a two
step normalization method reduces the latency of the addition. [19] presents
a floating-point MAF unit that computes floating-point addition with lower
latency than floating-point multiplication and MAF. This is accomplished by
bypassing, in case of an addition, the pipeline stages related to the multiplica-
tion. [20] introduces a two data-path MAF floating-point unit; and based on
whether a subtraction occurs, it activates only one of the paths to reduce the
average latency. [21] demonstrates a MAF floating-point unit able to process
denormalized numbers at the cost of slightly increased hardware complexity
and operation latency. [22] presents a fully pipelined MAF unit combining
the final addition with rounding. In [23] a bridged MAF design is presented.
This architecture includes a common floating-point multiplier and adder and
by adding specific hardware components between them, creates a “bridge”
sending data from the multiplier unit to the adder in order to perform the
MAF instruction. More complex architectures are presented in [24] and [25]:
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[24] proposes a dual-mode floating-point MAF unit with the SIMD feature
executing instructions of either double or single precision and [25] describes
a multi-functional double and quadruple precision floating-point MAF unit.

In addition to the above MAF designs there are several other architectures
presented in the literature, which involve stand-alone floating-point multipli-
ers and adders. Notable examples of relevant research are published in [26],
[27], [28], [29]. The authors in [26] present a floating-point multiplier exe-
cuting addition and rounding in parallel. In [27] a dual-precision multiplier
is proposed. It utilizes half-sized multiplication arrays to perform a double
precision multiplication in three cycles or a single precision multiplication
in two cycles. [28] presents two designs performing dual-mode floating-point
multiplication. The first architecture executes either one quad-precision mul-
tiplication or two double precision multiplications in parallel. The second
design performs one double precision multiplication or two single precision
multiplications in parallel. In [29] two architectures performing dual-mode
floating-point addition are presented. The first is based on the single-path
algorithm [30] and supports a double precision or two single precision ad-
ditions in parallel. The second design implements the two path algorithm
[30] and performs either a quad-precision addition or two double precision
additions in parallel.

Compared to the literature above, our proposed architecture is the only
design, which provides triple functionality allowing it to operate in all the
precision modes, while being capable of performing multiple operations.

3. Conventional MAF Unit

This section highlights the IEEE floating-point standard format [10] and
a typical Multiply-Add Fused unit. According to the IEEE standard for
binary floating-point arithmetic a floating-point number requires three fields:
sign S, biased exponent E and fraction F. Fig. 1 depicts the fields of the
different precision formats and the following equation shows the value X of
a normalized floating-point number:

X = (−1)S × 2E−bias × 1.F
A brief description of a typical double precision MAF architecture (Fig.

2) included in several general purpose processors [17], [18], [21], [22], [24], is
given in the following paragraphs.

The IEEE representation of a double precision floating point number
requires 1-bit as a sign, 11-bit for the biased exponent and 53-bit fraction.
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Figure 1: (a) Single precision format, (b) Double precision format and (c) Quadruple
precision format.

The execution of a MAF instruction is accomplished through a number of
serial steps, that are categorized in three stages:

1. Multiplication Stage: the first stage multiplies the 53-bit significands of
the operands A and B. At the same time, the third operand C is inverted
and aligned. This is performed in parallel with the multiplication, in
order to reduce the latency, with the addend C positioned 56 bits left
of the product. Next, the exponent difference is calculated: diff =
expC− (expA + expB − 1023) where expA, expB, expC are the biased
exponents of the operands A, B and C respectively and 1023 is the bias
for IEEE754 double precision arithmetic. Hence, the necessary shift
amount equals:
sh = 56− diff ⇒ sh = expA + expB − expC − 967
Then, the alignment is performed as a right-shift by the 161-bit aligner.

2. Addition Stage: the second stage adds the 106-bit product A× B and
the 161-bit aligned operand C by using a 106-bit 3:2 CSA and a 161-
bit adder. In parallel with the addition, the Leading Zero Anticipator
(LZA) unit processes the lower 106-bits of the 3:2 CSA and it computes
the necessary shift amount for normalization. If it is required, the
adder result will be complemented before forwarding the result to the
last stage.

3. Normalization and Rounding : the third stage performs normalization
and rounding to produce the final result. The 161-bit result is nor-
malized based on the estimation of the LZA unit. Next, rounding is
performed and, if required, a post-normalization. At the same time,
the sign and the exponent of the final result are prepared.
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Figure 2: Block diagram of a basic MAF architecture.

4. Proposed architecture overview

The motivation behind this work has been to research and design an
efficient MAF architecture able to operate in different precision modes while
being capable of performing multiple instructions in an SIMD fashion. We
follow a design approach leading to an architecture with high performance
and reduced latency, at relatively modest hardware cost. We have designed
the MAF unit to support three different precision modes: quadruple, double
and single precision. In each of these modes the design performs a number of
different operations: MAF instruction, stand-alone multiplication, or stand-
alone addition.

Our study towards improving the latency of the MAF unit led us to follow
the multiple-path approach [30]. The multiple-path design strategy divides
the critical path into several paths according to the exponent difference. The
resulting architecture allows each path to carry out a less complex scenario
and therefore, to keep the delay at lower levels compared to the traditional
implementations. The multiple-path approach is widely used to speedup the
FP adder [31] and MAF (Multiply-Addition Fused) [32], [33] effectively.
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Based on the above idea, the current work follows a dual-path design
strategy to reduce the latency of the floating-point addition with respect to
the standard MAF implementations. Its functionality is based on combining
the final addition with rounding by using a dual-adder at the final stage,
while anticipating the normalization before that addition. This scheme was
initially utilized in floating-point addition, in order to take advantage of the
fact that the operations of full length alignment and normalization shifts are
mutually exclusive. Therefore, only one full length shifter appears on the
critical path.

To achieve the above mentioned objectives the proposed design incorpo-
rates several schemes:

1) The design follows a dual-path approach [19] to reduce the latency
of instructions that involve stand-alone floating-point additions. The dual-
path scheme divides the datapath of the add stage into two different paths:
the Close path and the Far path. The Close path handles cases where
massive cancellation occurs, while the Far path handles the remaining cases.
The idea is to reduce the latency of the FP ADD instruction by bypassing
the multiplier and by placing the alignment shifter at the next stage. The
architecture avoids the duplication of the alignment shifter in both paths
by taking advantage of the fact that full-length alignment and full-length
normalization shifts are mutually exclusive operations and therefore, each
datapath needs to utilize only one full length shifter. Hence, the Far path
requires only one large alignment shifter (and a much smaller normalization
shifter) and the Close path requires only one large normalization shifter
(and a small alignment shifter). Avoiding the two large shifters from both
datapaths leads to reduced critical delay and area.

2) In order to further improve the efficiency of our design we avoid the
implementation of a typical dual-path architecture and by following the ap-
proach of [35] the multiplier results are added at the beginning of the second
stage. Thus, we manage to significantly reduce the area of the modules fol-
lowing this addition and more importantly to reduce the size of the alignment
shifters, which incur significant overheads on area and delay in prior designs.
The proposed approach however, follows a standard 3 stage implementation
(instead of the 4 stage implementation of [35]), in which both the Close and
Far paths are extended to the third stage. The Far path performs normal-
ization in the second stage, before the final addition and rounding, while the
Close path resembles that of a typical MAF design performing normalization
and rounding in the final stage.
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3) The proposed dual-path design is based on a quadruple precision MAF
unit and it is augmented to support the execution of two double precision
instructions or four single precision instructions in SIMD fashion. For this
reason, several components have been carefully redesigned and additional
logic has been introduced. We note here that, although we have used ad-
ditional hardware resources, the area results are still improved compared to
the approach of merely duplicating the components for each precision mode.

4) The architecture utilizes three 128-bit registers. Each of these registers
-depending on the operation mode- can be used to store one quadruple, two
double, or four single precision operands. The design is a three-stage pipeline
and has a throughput of one result per cycle.

Fig. 3 illustrates the block diagram of the proposed multiple precision
floating-point MAF architecture. The remaining of this section describes the
overall functionality of the proposed design and provides a detailed analysis
of the design’s behavior in each precision mode.

4.1. Quadruple precision mode

The quadruple precision (QP) mode operation involves the execution of
any of the following three: the MAF single instruction equation, quad mul-
tiplication and quad addition. The following paragraphs describe the func-
tionality of the three stages in this mode.

First stage: calculations begin by transforming the operand mantissas to
the form: [‘1’, R1(111:0)] and [‘1’, R2(111:0)] in order to include the hid-
den bits. Following the above operation, the exponent processing module
calculates the exponent difference, the necessary shift amount and control
signals. In the cases of executing MAF instructions or quad multiplications,
the multiplication exponent processing is performed in parallel with the mul-
tiplication. The array multiplier (Fig. 3, 1st stage) performs the modified
mantissas multiplication. For quad-precision the multiplier operates as a
typical 113 × 113 bit array multiplier producing the results in carry-save
format.

In the second and third stage, the datapath is divided into two paths:
the Close and the Far path. Only one path is activated depending on the
outcome of the exponent difference. The Close datapath is activated in
the cases of effective subtraction with exponent difference diff = −1, 0, 1,
or in the case of effective subtraction with exponent difference diff = 2
and multiplication overflow. For the remaining cases the Far datapath is
activated.
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Figure 3: Block diagram of the proposed MAF architecture.
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Second stage: For stand-alone quadruple addition we bypass the first
stage and we use the duplicated exponent processing module at the beginning
of the second stage. In all other cases, the second stage receives as input the
multiplier products A × B along with the third operand C, which are both
outputs of the first stage. Depending on the exponent difference, the A×B

and C either follow the Close or the Far path. Regardless of the chosen path,
the multiplier products are added using four adders: two dual adders of 58-
and 57-bit, and two 56- and 55-bit adders. The dual adders are also used to
calculate in advance the complement of the addition, which will be required,
if the result from the Close path is negative. In quad-precision mode all four
adders perform as a single device; in other precision modes they operate as
individual adders. By adding the multiplier results we significantly reduce
the size of the alignment shifters and thus, we reduce the overall area.

The Close path performs alignment of the operand C by shifting it at most
1-bit right or 2-bit left using the 3-bit shifter. Hence, for quad precision mode
the aligned operand is 116 bits (Fig. 4). Following the alignment operation,
operand C is always inverted to ensure a positive result and in case of a
negative result the sign is inverted again at the end of the second stage. Note
that, a 2’s complement representation is preferred, because it avoids the end-
around carry adjustment. Next, the operand C and the multiplier results are
forwarded into a 117-bit 3:2 CSA to obtain a redundant representation of
the intermediate vectors. To complete the 2’s complement an additional 1 is
added using an empty slot of the 3:2 CSA. The two resulting vectors are then
added by using four dual adders. In quad precision mode these adders are
combined together, while in other precision modes they are used separately
in order to accommodate parallel additions. To avoid additional delays in
the Close path, the LZA operation is performed in parallel with the addition.
The LZA unit was designed following the method presented in [36]. A sign
detection unit determines the correct sign based on the addition results and
it complements if necessary.

The Far path performs word-length shift operations in order to align
either A× B or C based on the sign of the exponent difference. If diff > 0
the A × B will be right-shifted by at most 115 bits and if diff ≤ 0 the C
will be right-shifted by at most by 226 bits (Fig. 4). Since the multiplier
results have been added at the beginning of the second stage, there are only
two vectors to be handled and the alignment can be performed by using one
shifter instead of two. This shifter is shared by vectors A × B and C and
it is used to align one of them depending on the case. For this purpose,
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instead of using a 226-bit shifter we utilize two smaller shifters of 115 and
111 bits. The first shifter is used to align vector A × B and both shifters
are used to align vector C. During the alignment operation the shifted-out
bits are used for the calculation of the sticky bit. In the next section we
further analyze the internal structure of these shifters and explain how they
are designed to accommodate the parallel alignment operations in different
precision modes. If the alignment operation provides a negative result, one
of the aligned vectors A × B and C will be inverted in order to obtain
positive results. The following function forwards the vectors into a row of
Half Adders (HAs): an empty slot in that row is used to add the necessary 1
to complete 2’s complement representation of the inversion. In the Far -path,
the normalization is performed before the addition. This is accomplished by
a 2-bit normalization shifter handling a possible 1-bit right or 1-bit left shift
operation to correct a possible overflow or an unnormalized result.

113 bit

226 bit

2 bit 1 bit
C

AxB

113 bit

226 bit

C

AxB

113 bit

226 bit

C

AxB

. . .

. . .

. . .

. . .

. . .

. . .

a) Word alignment in CLOSE datapath

b) Word alignment in FAR datapath for diff>0 and diff<0

Figure 4: Alignment in the Close and Far datapath.

Third stage: the proposed design features distinct functionalities for the
Close and the Far paths in the third stage, in contrast to the traditional dual
path approach [19] suggesting two paths only in the second stage. The third
stage includes the rounding step and it supports all the rounding modes
described by the IEEE standard. The Close path in this stage performs
normalization and rounding. Since a full length normalization is required,
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a 118-bit shifter is used for normalization. As it will be explained in the
following section, this shifter is a combination of smaller shifters in order
to accommodate the double and single precision operations as well. Note
here that, the LZA operations performed previously in the second stage can
cause a 2-bit uncertainty: to overcome this problem, in the third stage we
perform rounding and post-normalization to calculate and determine the
correct result, which is then forwarded to the output.

The Far path performs the final addition and rounding. The upper 113
bits of the data vector from the previous stage are used to perform dual
addition while the remaining bits are forwarded to the rounding module.
Two dual adders (58- and 53-bits) are combined together to compute sum
and sum+1. At the same time, the rounding module uses the least significant
bits along with the sticky bit and the rounding bit to calculate the rounding
result. Based on the latter, the correct output is selected.

4.2. Double and Single precision mode

The proposed MAF operates in double or in single precision mode as
described in the previous section (4.1). This section focuses on how the spe-
cific components of the architecture can accommodate the different precision
formats.

In double precision mode (DP) the proposed design can accommodate the
parallel (SIMD) execution of two MAF instructions, or the parallel (SIMD)
execution of two double precision floating-point multiplications or additions.
In DP mode each register contains two double precision operands.

Operating in single precision mode (SP) the design can accommodate the
parallel (SIMD) execution of four single instruction equations, or the par-
allel (SIMD) execution of four single precision floating-point multiplications
or additions, while in SP mode each register contains four single precision
operands.

Exponent processing : In order to attain the parallel execution of double
and single precision instructions, one double and two single precision expo-
nent processing units have been added. Two exponent processing operations
belonging to two different double precision MAF instructions can be per-
formed in parallel: the first in the exponent processing unit made for quad
precision and the second in the additional double precision unit. In the single
precision mode, each exponent processing unit (the quad, the double and the
two single) is used to support a single precision instruction.
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Multiplication: The multiplier of the proposed MAF performs simultane-
ously two 53-bit multiplications in double precision, or four parallel 24-bit
multiplications in single precision. As mentioned in the previous section
(4.1), one array multiplier is used to accommodate all three precision modes.
The choice of an array multiplier over a Booth encoding design is justified by
the following: first, Booth encoding requires more complex control logic in
order to handle three precision formats, which in turn would introduce addi-
tional latency to the design. Second, in Booth encoding any subword carry
bits, in double and single precision mode have to be detected and suppressed
in the reduction tree and CPA [24]. Therefore, even though the array multi-
plier requires a larger compression tree, it is far more suitable for a multiple
precision MAF design than the Booth multiplier [21], [22], [35].

Fig. 5a shows how the two double precision multiplications can be per-
formed in parallel. The four mantissas, extended with the hidden 1, are input
to the multiplier and the products A1×B1, A2×B2 are computed within the
two 53×53 submatrixes P1 and P2 by using the subword parallel multiplica-
tion [34]. The bits of the partial products within the regions labeled Z are set
to zero to avoid altering the final results. Moreover, as shown in Fig. 5b the
multiplier can also perform in parallel four single precision multiplications
by applying the same technique as in the case of double precision mode.
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Figure 5: Subword parallel multiplication.

Alignment and normalization shifters : The alignment shifter used in the
Far path is able to perform parallel alignment shift operations. When the
design operates in double precision mode (DP) the maximum alignment shift
of vectors A × B and C is 55 bits and 106 bits respectively, while in single
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precision mode (SP) it is 26 bits and 48 bits respectively. Furthermore, in
DP mode the design has to perform at most two parallel shift operations,
while in SP mode is has to accommodate four alignment shifts.

As described in the previous section (4.1), the alignment shifter of the
Far path consists of two shifters of 115 and 111 bits. However, in order to
support every precision mode these shifters are further divided. The 115-bit
shifter is divided in two shifters with size 60-bit and 55-bit, while the 111-bit
shift operation is accomplished by combining two smaller shifters with size
65-bit and 56-bit. Hence, in DP mode the first two shifters are combined to
perform the alignment of the first instruction, and the second pair of shifters
form a single device for the second instruction. Finally, in SP mode each of
the four small shifters is used to accommodate the alignment operation of a
single instruction.

The normalization shifter in the Close path has a similar design to the
alignment shifter in the Far path. The 118-bit normalization shifter of the
Close path consists of four shifters (two 30-bit and two 29-bit shifters). In DP
mode these shifters are combined in pairs to perform two parallel normaliza-
tion operations, while is SP mode they operate as stand-alone normalization
shifters.

5. Implementation results and analysis

The proposed architecture has been designed and implemented in VHDL
and the design functionality has been verified through simulation analysis.
For comparison purposes besides the presented design, we have also imple-
mented four more MAF architectures. The first is a typical double precision
MAF unit similar to that described in section 3. The second is a dual-mode,
dual-path MAF design [19], which performs one double precision MAF in-
struction, or two single precision instructions in parallel. The third is a
typical quad precision MAF unit. The fourth is a multi-block design includ-
ing a typical quadruple precision MAF and two dual-mode dual-path MAF
units.

All the designs were synthesized in the Faraday/UMC 65 nm Library
(10M layers) targeting the LL-RVT (LowK) UMC process. Worst-case con-
ditions (WCCOM, VCC=1.08V, 125C) were selected for front-end synthesis
with Cadence RTL Compiler (RC) V10.10. The designs were constrained
for 500 MHz operation (2000 ps period), with input and output delays set
at half that value (1000 ps). For the clock uncertainty, 100 ps were also
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Table 1: MAF designs post-layout results

Typical Dual Typical Multi Prop.
DP mode QP Block MAF

Area (um2) 119668 149343 515123 812952 672046
AND2
Eq. Gates 74792 93339 321952 508095 420028
Power (mW) 246.9 268.9 295 320 381
Fmax (MHz) 444.24 427 343 326 293.5

factored in. The retiming and auto-ungrouping features of RC were used, as
well as low-power implementation techniques such as operand isolation and
clock-gating. Front-end synthesis was RTL-simulation-activity-driven with
the activity produced by 1000 RTL testbench test vectors used to drive dy-
namic and leakage power optimizations. The spatial mode of RC was used,
as the use of a reasonably recent process node rendered selection (and use)
of wireload models invalid. Finally, to enable more back-end freedom, cer-
tain switches were enabled to allow for Total-Negative-Slack optimization.
Note here that, following the final Place-and-Route flow the power was ex-
tracted from within the Cadence Encounter environment using statistical
means. Thus, the average power consumption of all designs (Table 1) was
established at the maximum (post-route) operating frequency of that design
and the following activity factors were used: Input activity: 0.5; Dominant
Frequency: Design max. Frequency; Flop activity: 0.5; Clock gate activity:
0.5. We note that the activity factors are very high; however, our study
is consistent as all the MAF designs were measured at these activity levels.
The post layout results for all designs are summarized in Table 1, while Table
2 shows the post layout results for the multiplier used in the proposed de-
sign. Table 3 shows the energy per operation results for all the implemented
MAF designs. The figures of this table were produced by multiplying the
power consumption with the period of the design to derive an “Energy-per-
operation” metric. Fig. 6 shows the VLSI layouts of the three additional
MAF architectures and Fig. 7 presents the VLSI layouts of the multi-block
MAF and the proposed MAF design.

In order to evaluate the performance of the presented architecture we
first highlight the main aspects of our design and compare them with other
multiple precision architectures. Then, we assess our design’s performance
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Table 2: Proposed MAF multiplier results

Area (um2) AND2-Eq. Gates Fmax (MHz)

Prop. Quad Multiplier 389882 243676 341

Table 3: Energy per operation of the MAF designs

Typical Dual Typical Multi Prop.
DP mode QP Block MAF

Energy per operation (pJ/op) 555.52 618.47 855.5 979.2 1295.4

with respect to hardware cost and latency, by comparing it to the typical
quad precision MAF and the multi-block MAF, while at the same time we
present the area and latency results for the typical and the dual-mode MAF
designs. Using these results, we finally consider the approach of utilizing
multiple double or single precision MAF architectures and we compare the
corresponding results to our single architecture solution.

The proposed MAF follows a modified dual-path approach, in which the
Close path operates as a typical MAF architecture performing addition in
the second stage and normalization and rounding in the third stage. The Far
path however, anticipates normalization in the second stage, before the addi-
tion, while utilizing only one alignment shifter to accommodate the various
shift operations. Moreover, our design combines the multiplier products at
the beginning of the second stage to reduce the size of the vectorized modules
and all the additions and alignment operations are performed by combining
small scale adders and shifters. These features allow the accommodation of
different precision modes and they maintain low latency. The comparison of
the proposed design to existing dual-path architectures shows that the design
in [19] requires two full length alignment shifters instead of one in our case,
while the algorithm of [35] divides the Far path in two sub-paths and even
though it reduces the latency (compared to [19]), it requires 4 stages and
utilizes additional hardware for the Far path compared to our design.

Table 1 shows that compared to the typical quad precision architecture
the proposed design demonstrates a 23% increase in area and a much smaller
increase in latency 14%. The proposed MAF requires approximately four
times the area of the dual mode implementation, which performs only one
double and two single precision MAF instructions. Hence, in order to perform
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(a) (b) (c)

Figure 6: The VLSI layout of (a)the typical double precision MAF, (b)the dual-mode,
dual-path MAF and (c)the typical quad-precision MAF design.

(a) (b)

Figure 7: The VLSI layout of (a)the multi-block MAF design and (b)the proposed MAF
design.

two double precision or four single precision instructions, we would need to
utilize two dual-path or four typical MAF units, leading to a substantial
increase in area, while still not being able to accommodate quad precision
instructions.

To assess the benefit of using the proposed MAF we highlight the func-
tionality and throughput capabilities of the MAF architectures used for the
comparison:

1. Typical QP MAF : this unit can execute one QP instruction
per cycle.

2. The typical double precision MAF : this unit can execute one
DP instruction per cycle.
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3. Dual-mode, dual-path DP MAF unit : it can execute one DP
or two SP instructions per cycle, but does not support the
execution of QP instructions.

4. Multi-Block MAF : it supports all types of floating-point preci-
sion and it can execute one QP instruction per cycle, two DP
instructions per cycle or four SP instructions per cycle.

5. Proposed MAF : this unit supports all types of floating-point
precision and it can execute one QP instruction per cycle, two
DP instructions per cycle or four SP instructions per cycle.

As shown above, the proposed MAF has as equivalent only the multi-
block MAF with respect to the functionality and throughput. The multi-
block MAF requires less energy per operation (Table 3), but as Table 1
shows, the proposed design prevails in terms of area. Therefore, the pro-
posed design is well suited for applications, which demand high throughput
execution of multiple instructions and the performance of all floating-point
precision modes, while at the same time the MAF design is limited by the
area constraints.

6. Conclusion

The current paper presents a multi-functional, multiple precision MAF
architecture based on a dual-path organization, which operates efficiently
in quadruple, double and single precision format. The proposed MAF unit
is designed to perform one quad, or two double, or four single precision
MAF instructions in parallel. Moreover, the presented architecture features
multiple stand-alone multiply or add operations in any precision mode.

The MAF unit introduced in this paper can execute more instructions
than other presently available dual path architectures. For comparison pur-
poses four additional MAF units have been implemented in the same tech-
nology: a typical double, a typical quad precision MAF architecture; a dual
mode MAF unit preforming instructions in double and single precision for-
mat; and a multi-block MAF consisting of a typical quadruple precision MAF
and two dual-mode dual-path MAF units. The area and performance results
presented in our paper show that the proposed MAF architecture achieves
an excellent balance of performance for a given area. These features benefit
applications, by providing three different precision levels, which are executed
at high throughput rates, in a compact package.
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