5 research outputs found

    Self-Repairing Disk Arrays

    Full text link
    As the prices of magnetic storage continue to decrease, the cost of replacing failed disks becomes increasingly dominated by the cost of the service call itself. We propose to eliminate these calls by building disk arrays that contain enough spare disks to operate without any human intervention during their whole lifetime. To evaluate the feasibility of this approach, we have simulated the behavior of two-dimensional disk arrays with n parity disks and n(n-1)/2 data disks under realistic failure and repair assumptions. Our conclusion is that having n(n+1)/2 spare disks is more than enough to achieve a 99.999 percent probability of not losing data over four years. We observe that the same objectives cannot be reached with RAID level 6 organizations and would require RAID stripes that could tolerate triple disk failures.Comment: Part of ADAPT Workshop proceedings, 2015 (arXiv:1412.2347

    A flexible simulation tool for estimating data loss risks in storage arrays

    No full text
    Proteus is an open-source simulation program that can predict the risk of data loss in many disk array configurations, among which, mirrored disks, all levels of RAID arrays and various two-dimensional RAID arrays. It characterizes each array by five numbers, namely, the size n of the array, the number nf of simultaneous disk failures the array will always tolerate without data loss, and the respective fractions f1, f2 and f3 of simultaneous failures of nf+ 1, nf+ 2 and nf+ 3 disks that will not result in a data loss. As with any simulation tool, Proteus imposes no restriction on the distributions of failure and repair events. Our measurements have shown a surprisingly good agreement with the results obtained through analytical techniques and no measurable difference between values obtained assuming deterministic repair times and those assuming exponential repair times. © 2013 IEEE
    corecore