5 research outputs found

    Hessian barrier algorithms for linearly constrained optimization problems

    Get PDF
    In this paper, we propose an interior-point method for linearly constrained optimization problems (possibly nonconvex). The method - which we call the Hessian barrier algorithm (HBA) - combines a forward Euler discretization of Hessian Riemannian gradient flows with an Armijo backtracking step-size policy. In this way, HBA can be seen as an alternative to mirror descent (MD), and contains as special cases the affine scaling algorithm, regularized Newton processes, and several other iterative solution methods. Our main result is that, modulo a non-degeneracy condition, the algorithm converges to the problem's set of critical points; hence, in the convex case, the algorithm converges globally to the problem's minimum set. In the case of linearly constrained quadratic programs (not necessarily convex), we also show that the method's convergence rate is O(1/kρ)\mathcal{O}(1/k^\rho) for some ρ(0,1]\rho\in(0,1] that depends only on the choice of kernel function (i.e., not on the problem's primitives). These theoretical results are validated by numerical experiments in standard non-convex test functions and large-scale traffic assignment problems.Comment: 27 pages, 6 figure

    Hessian barrier algorithms for linearly constrained optimization problems

    Get PDF
    International audienceIn this paper, we propose an interior-point method for linearly constrained-and possibly nonconvex-optimization problems. The method-which we call the Hessian barrier algorithm (HBA)-combines a forward Euler discretization of Hessian-Riemannian gradient flows with an Armijo backtracking step-size policy. In this way, HBA can be seen as an alternative to mirror descent, and contains as special cases the affine scaling algorithm, regularized Newton processes, and several other iterative solution methods. Our main result is that, modulo a nondegeneracy condition, the algorithm converges to the problem's critical set; hence, in the convex case, the algorithm converges globally to the problem's minimum set. In the case of linearly constrained quadratic programs (not necessarily convex), we also show that the method's convergence rate is O(1/kρ)O(1/k^\rho) for some ρ(0,1]\rho \in (0, 1] that depends only on the choice of kernel function (i.e., not on the problem's primi-tives). These theoretical results are validated by numerical experiments in standard nonconvex test functions and large-scale traffic assignment problems

    Generalized self-concordant Hessian-barrier algorithms

    Get PDF
    Many problems in statistical learning, imaging, and computer vision involve the optimization of a non-convex objective function with singularities at the boundary of the feasible set. For such challenging instances, we develop a new interior-point technique building on the Hessian-barrier algorithm recently introduced in Bomze, Mertikopoulos, Schachinger and Staudigl, [SIAM J. Opt. 2019 29(3), pp. 2100-2127], where the Riemannian metric is induced by a generalized selfconcordant function. This class of functions is sufficiently general to include most of the commonly used barrier functions in the literature of interior point methods. We prove global convergence to an approximate stationary point of the method, and in cases where the feasible set admits an easily computable self-concordant barrier, we verify worst-case optimal iteration complexity of the method. Applications in non-convex statistical estimation and Lp-minimization are discussed to given the efficiency of the method

    Generalized Self-concordant Hessian-barrier algorithms

    Get PDF
    Many problems in statistical learning, imaging, and computer vision involve the optimization of a non-convex objective function with singularities at the boundary of the feasible set. For such challenging instances, we develop a new interior-point technique building on the Hessian-barrier algorithm recently introduced in Bomze, Mertikopoulos, Schachinger and Staudigl, [SIAM J. Opt. 2019 29(3), pp. 2100-2127], where the Riemannian metric is induced by a generalized self-concordant function. This class of functions is sufficiently general to include most of the commonly used barrier functions in the literature of interior point methods. We prove global convergence to an approximate stationary point of the method, and in cases where the feasible set admits an easily computable self-concordant barrier, we verify worst-case optimal iteration complexity of the method. Applications in non-convex statistical estimation and LpL^{p}-minimization are discussed to given the efficiency of the method
    corecore