1,862 research outputs found

    Regularized Jacobi iteration for decentralized convex optimization with separable constraints

    Full text link
    We consider multi-agent, convex optimization programs subject to separable constraints, where the constraint function of each agent involves only its local decision vector, while the decision vectors of all agents are coupled via a common objective function. We focus on a regularized variant of the so called Jacobi algorithm for decentralized computation in such problems. We first consider the case where the objective function is quadratic, and provide a fixed-point theoretic analysis showing that the algorithm converges to a minimizer of the centralized problem. Moreover, we quantify the potential benefits of such an iterative scheme by comparing it against a scaled projected gradient algorithm. We then consider the general case and show that all limit points of the proposed iteration are optimal solutions of the centralized problem. The efficacy of the proposed algorithm is illustrated by applying it to the problem of optimal charging of electric vehicles, where, as opposed to earlier approaches, we show convergence to an optimal charging scheme for a finite, possibly large, number of vehicles

    Index Information Algorithm with Local Tuning for Solving Multidimensional Global Optimization Problems with Multiextremal Constraints

    Full text link
    Multidimensional optimization problems where the objective function and the constraints are multiextremal non-differentiable Lipschitz functions (with unknown Lipschitz constants) and the feasible region is a finite collection of robust nonconvex subregions are considered. Both the objective function and the constraints may be partially defined. To solve such problems an algorithm is proposed, that uses Peano space-filling curves and the index scheme to reduce the original problem to a H\"{o}lder one-dimensional one. Local tuning on the behaviour of the objective function and constraints is used during the work of the global optimization procedure in order to accelerate the search. The method neither uses penalty coefficients nor additional variables. Convergence conditions are established. Numerical experiments confirm the good performance of the technique.Comment: 29 pages, 5 figure

    A Non-Convex Relaxation for Fixed-Rank Approximation

    Full text link
    This paper considers the problem of finding a low rank matrix from observations of linear combinations of its elements. It is well known that if the problem fulfills a restricted isometry property (RIP), convex relaxations using the nuclear norm typically work well and come with theoretical performance guarantees. On the other hand these formulations suffer from a shrinking bias that can severely degrade the solution in the presence of noise. In this theoretical paper we study an alternative non-convex relaxation that in contrast to the nuclear norm does not penalize the leading singular values and thereby avoids this bias. We show that despite its non-convexity the proposed formulation will in many cases have a single local minimizer if a RIP holds. Our numerical tests show that our approach typically converges to a better solution than nuclear norm based alternatives even in cases when the RIP does not hold

    Applying a phase field approach for shape optimization of a stationary Navier-Stokes flow

    Get PDF
    We apply a phase field approach for a general shape optimization problem of a stationary Navier-Stokes flow. To be precise we add a multiple of the Ginzburg--Landau energy as a regularization to the objective functional and relax the non-permeability of the medium outside the fluid region. The resulting diffuse interface problem can be shown to be well-posed and optimality conditions are derived. We state suitable assumptions on the problem in order to derive a sharp interface limit for the minimizers and the optimality conditions. Additionally, we can derive a necessary optimality system for the sharp interface problem by geometric variations without stating additional regularity assumptions on the minimizing set

    Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants

    Get PDF
    In this paper, the global optimization problem minySF(y)\min_{y\in S} F(y) with SS being a hyperinterval in N\Re^N and F(y)F(y) satisfying the Lipschitz condition with an unknown Lipschitz constant is considered. It is supposed that the function F(y)F(y) can be multiextremal, non-differentiable, and given as a `black-box'. To attack the problem, a new global optimization algorithm based on the following two ideas is proposed and studied both theoretically and numerically. First, the new algorithm uses numerical approximations to space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the H\"{o}lder condition. Second, the algorithm at each iteration applies a new geometric technique working with a number of possible H\"{o}lder constants chosen from a set of values varying from zero to infinity showing so that ideas introduced in a popular DIRECT method can be used in the H\"{o}lder global optimization. Convergence conditions of the resulting deterministic global optimization method are established. Numerical experiments carried out on several hundreds of test functions show quite a promising performance of the new algorithm in comparison with its direct competitors.Comment: 26 pages, 10 figures, 4 table
    corecore