225 research outputs found

    An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely berth allocation, quay crane assignment, and quay crane scheduling that arise in container ports. Each one of these problems is difficult to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence, it is desirable to solve them in a combined form. The model is of the mixed-integer programming type with the objective being to minimize the tardiness of vessels and reduce the cost of berthing. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX. Large scale instances, however, can only be solved in reasonable times using heuristics. Here, an implementation of the genetic algorithm is considered. The effectiveness of this implementation is tested against CPLEX on small to medium size instances of the combined model. Larger size instances were also solved with the genetic algorithm, showing that this approach is capable of finding the optimal or near optimal solutions in realistic times

    Combined quay crane assignment and quay crane scheduling with crane inter-vessel movement and non-interference constraints

    Get PDF
    Integrated models of the quay crane assignment problem (QCAP) and the quay crane scheduling problem (QCSP) exist. However, they have shortcomings in that some do not allow movement of quay cranes between vessels, others do not take into account precedence relationships between tasks, and yet others do not avoid interference between quay cranes. Here, an integrated and comprehensive optimization model that combines the two distinct QCAP and QCSP problems which deals with the issues raised is put forward. The model is of the mixed-integer programming type with the objective being to minimize the difference between tardiness cost and earliness income based on finishing time and requested departure time for a vessel. Because of the extent of the model and the potential for even small problems to lead to large instances, exact methods can be prohibitive in computational time. For this reason an adapted genetic algorithm (GA) is implemented to cope with this computational burden. Experimental results obtained with branch-and-cut as implemented in CPLEX and GA for small to large-scale problem instances are presented. The paper also includes a review of the relevant literature

    An evolutionary approach to solving a new integrated quay crane assignment and quay crane scheduling mathematical model

    Get PDF
    This paper puts forward an integrated optimisation model that combines two distinct problems arising in container terminals, namely the Quay Crane Assignment Problem, and the Quay Crane Scheduling Problem. The model is of the mixed-integer programming type with the objective being to minimise the tardiness of vessels. Although exact solutions can be found to the problem using Branch-and-Cut, for instance, they are costly in time when instances are of realistic sizes. To overcome the computational burden of large scale instances, an adapted Genetic Algorithm, is used. Small to medium size instances of the combined model have been solved with both the Genetic Algorithm and the CPLEX implementation of Branch-and-Cut. Larger size instances, however, could only be solved approximately in acceptable times with the Genetic Algorithm. Computational results are included and discussed

    A combined Mixed Integer Programming model of seaside operations arising in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely the Berth Allocation Problem, the Quay Crane Assignment Problem, and the Quay Crane Scheduling problem, which have to be solved to carry out these seaside operations in container ports. Each one of these problems is complex to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence the need to solve them in a combined form. The problem is formulated as a mixed-integer programming model with the objective being to minimise the tardiness of vessels. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    A reclaimer scheduling problem arising in coal stockyard management

    Full text link
    We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor approximation algorithm.Comment: 26 page
    • …
    corecore