20,989 research outputs found

    A Fast Exact Algorithm for the Problem of Optimum Cooperation and Structure of Its Solutions

    Get PDF
    Given a graph with real edge weights, the optimum cooperation problem consists in determining a partition of the graph that maximizes the sum of weights of the edges with nodes in the same class plus the number of the classes of the partition. The problem is also known in the literature as the optimum attack problem in networks. Furthermore, a relevant physics application exists. In this work, we present a fast exact algorithm for the optimum cooperation problem. Algorithms known in the literature require n-1 minimum cut computations in a corresponding network, where n is the number of nodes in the graph. By theoretical considerations and appropriately designed heuristics, we considerably reduce the numbers of minimum cut computations that are necessary in practice. We show the effectiveness of our method by presenting results on instances coming from the physics application. Furthermore, we analyze the structure of the optimal solutions

    Coalition Formation Game for Cooperative Cognitive Radio Using Gibbs Sampling

    Get PDF
    This paper considers a cognitive radio network in which each secondary user selects a primary user to assist in order to get a chance of accessing the primary user channel. Thus, each group of secondary users assisting the same primary user forms a coaltion. Within each coalition, sequential relaying is employed, and a relay ordering algorithm is used to make use of the relays in an efficient manner. It is required then to find the optimal sets of secondary users assisting each primary user such that the sum of their rates is maximized. The problem is formulated as a coalition formation game, and a Gibbs Sampling based algorithm is used to find the optimal coalition structure.Comment: 7 pages, 2 figure

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Deriving the Normalized Min-Sum Algorithm from Cooperative Optimization

    Full text link
    The normalized min-sum algorithm can achieve near-optimal performance at decoding LDPC codes. However, it is a critical question to understand the mathematical principle underlying the algorithm. Traditionally, people thought that the normalized min-sum algorithm is a good approximation to the sum-product algorithm, the best known algorithm for decoding LDPC codes and Turbo codes. This paper offers an alternative approach to understand the normalized min-sum algorithm. The algorithm is derived directly from cooperative optimization, a newly discovered general method for global/combinatorial optimization. This approach provides us another theoretical basis for the algorithm and offers new insights on its power and limitation. It also gives us a general framework for designing new decoding algorithms.Comment: Accepted by IEEE Information Theory Workshop, Chengdu, China, 200

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines
    • 

    corecore