656 research outputs found

    AFPTAS results for common variants of bin packing: A new method to handle the small items

    Full text link
    We consider two well-known natural variants of bin packing, and show that these packing problems admit asymptotic fully polynomial time approximation schemes (AFPTAS). In bin packing problems, a set of one-dimensional items of size at most 1 is to be assigned (packed) to subsets of sum at most 1 (bins). It has been known for a while that the most basic problem admits an AFPTAS. In this paper, we develop methods that allow to extend this result to other variants of bin packing. Specifically, the problems which we study in this paper, for which we design asymptotic fully polynomial time approximation schemes, are the following. The first problem is "Bin packing with cardinality constraints", where a parameter k is given, such that a bin may contain up to k items. The goal is to minimize the number of bins used. The second problem is "Bin packing with rejection", where every item has a rejection penalty associated with it. An item needs to be either packed to a bin or rejected, and the goal is to minimize the number of used bins plus the total rejection penalty of unpacked items. This resolves the complexity of two important variants of the bin packing problem. Our approximation schemes use a novel method for packing the small items. This new method is the core of the improved running times of our schemes over the running times of the previous results, which are only asymptotic polynomial time approximation schemes (APTAS)

    The Generalized Bin Packing Problem with bin-dependent item profits

    Get PDF
    In this paper, we introduce the Generalized Bin Packing Problem with bin-dependent item profits (GBPPI), a variant of the Generalized Bin Packing Problem. In GBPPI, various bin types are available with their own capacities and costs. A set of compulsory and non-compulsory items are also given, with volume and bin-dependent profits. The aim of GBPPI is to determine an assignment of items to bins such that the overall net cost is minimized. The importance of GBPPI is confirmed by a number of applications. The introduction of bin-dependent item profits enables the application of GBPPI to cross-country and multi-modal transportation problems at strategic and tactical levels as well as in last-mile logistic environments. Having provided a Mixed Integer Programming formulation of the problem, we introduce efficient heuristics that can effectively address GBPPI for instances involving up to 1000 items and problems with a mixed objective function. Extensive computational tests demonstrate the accuracy of the proposed heuristics. Finally, we present a case study of a well-known international courier operating in northern Italy. The problem approached by the international courier is GBPPI. In this case study, our methodology outperforms the policies of the company

    On the generalized bin packing problem

    Get PDF
    The generalized bin packing problem (GBPP) is a novel packing problem arising in many transportation and logistic settings, characterized by multiple items and bins attributes and the presence of both compulsory and non-compulsory items. In this paper, we study the computational complexity and the approximability of the GBPP. We prove that the GBPP cannot be approximated by any constant, unless P = NP. We also study the particular case of a single bin type and show that when an unlimited number of bins is available, the GBPP can be reduced to the bin packing with rejection (BPR) problem, which is approximable. We also prove that the GBPP satisfies Bellman’s optimality principle and, exploiting this result, we develop a dynamic programming solution approach. Finally, we study the behavior of standard and widespread heuristics such as the first fit, best fit, first fit decreasing, and best fit decreasing.We show that while they successfully approximate previous versions of bin packing problems, they fail to approximate the GBPP
    • …
    corecore