
ON DISCRETE HYPERBOX PACKING

A Dissertation

by

XIAFENG LI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2008

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4275996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON DISCRETE HYPERBOX PACKING

A Dissertation

by

XIAFENG LI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Donald Friesen
Committee Members, Jianer Chen

Andreas Klappenecker
Catherine Yan

Head of Department, Valerie E. Taylor

December 2008

Major Subject: Computer Science

iii

ABSTRACT

On Discrete Hyperbox Packing. (December 2008)

Xiafeng Li, B.S., Jingdezhen Ceramic Institute;

M.S., Shanghai Jiaotong University

Chair of Advisory Committee: Dr. Donald Friesen

Bin packing is a very important and popular research area in the computer

science field. Past work showed many good and real-world packing algorithms. How-

ever, due to the complexity of the problem in multiple-dimensional bin packing, also

called hyperbox packing, we need more practical packing algorithms for its real-world

applications.

In this dissertation, we extend 1D packing algorithms to hyperbox packing prob-

lems via a general framework that takes two inputs of a 1D packing algorithm and

an instance of hyperbox packing problem and outputs a hyperbox packing algorithm.

The extension framework significantly enriches the family of hyperbox-packing algo-

rithms, generates many framework-based algorithms, and simultaneously calls for the

analysis for those algorithms.

We also analyze the performance of a couple of framework-based algorithms from

two perspectives of worst-case performance and average-case performance. In worst-

case analysis, we use the worst-case performance ratio as our metric and analyze the

relationship of the ratio of framework-based algorithms and that of the corresponding

1D algorithms. We also compare their worst-case performance against two baselines:

strip optimal algorithms and optimal algorithms. In average-case analysis, we use

expected waste as a metric, analyze the waste of optimal hyperbox packing algorithms,

and estimate the asymptotic forms of the waste for framework-based algorithms.

iv

To my family

v

ACKNOWLEDGMENTS

In the long journey towards my Ph.D degree, I received a lot of help from a

variety of people. I am always grateful for their help and would like to take this

opportunity to acknowledge their kindness and express my appreciation.

First of all, I’d like to thank Dr. Donald Friesen, the incomparable research

advisor, for his patient guidance and wise advisory on my research. He introduced

me to the bin packing problem, referenced me the papers related to the research topic,

inspired me to explore complicated problems from different perspectives, even worked

with me to derive formulas, and patiently examined the correctness of proofs and the

results. My appreciation definitely goes to him for all he did for me. I was incredibly

lucky to have him as my advisor.

Second of all, I’d like to thank my other committee members, including Drs.

Jianer Chen, Andreas Klappenecker, and Catherine Yan. They took their precious

time to review my research manuscripts, to give me preliminary exams, and gave me

important comments and suggestions. I very much appreciate their time and effort

in helping me improve the quality of my research proposal and dissertation.

Next, I’d like to thank my wife, Dongling Zhan, for giving me the firm support

of pursuing the degree. She, along with my little son, Allen Li, gave me a joyful and

stress-free life, which gave me great encouragement and relieved the pressure from

studying. I also want to thank my parents and my parents-in-law for helping me

to take my responsibilities at family. Without their support and encouragement, it

would have been impossible for me to get this dissertation done.

Last, but not least, I’d like to thank all my friends that gave me help and care

during my long journey to get the degree.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Bin Packing Problem and Its Variants 2

B. Real-World Applications 4

1. 1D Applications . 4

2. 2D Applications . 6

3. 3D Applications . 7

C. Our Work . 7

II BACKGROUND . 9

A. One-Dimensional Approximation Algorithms 9

1. Next Fit (NF) . 9

2. First Fit (FF) . 11

3. Best Fit (BF) . 12

4. Sum of Squares (SS) 13

5. First Fit Decreasing (FFD) 16

6. Best Fit Decreasing (BFD) 17

B. Worst-Case Analysis . 17

1. Next Fit . 19

2. FF and BF . 21

a. Lower Bounds . 21

b. Upper Bounds . 26

3. FFD and BFD . 28

a. Lower Bounds . 29

b. Upper Bounds . 30

4. Sum of Squares . 32

a. Upper Bounds . 32

b. Lower Bounds . 32

C. Average-Case Analysis . 32

1. Notations . 33

2. Expected Waste of OPT 35

a. Asymptotic Forms of EWOPT
n 35

b. EWOPT
n Under U{B − 2, B} 36

3. Theoretical Packing Algorithm 36

vii

CHAPTER Page

4. Expected Waste of FF and BF 37

5. Expected Waste of SS 37

III EXTENSION FRAMEWORK 38

A. Framework-Related Concepts and Notations 38

1. dth Surface of Hyperbox 39

2. d-Adjacent . 40

3. d-Pile and d-Length 43

4. Virtual Bin . 45

B. How Does the Extension Framework Work? 46

1. Key Points . 46

a. Strip Packing Constraint 46

b. Pile Length Constraint 46

c. Offline Sorting . 46

d. Dimension Ordering 47

e. Use 1D Algorithm and Virtual Bin to Choose

d-Pile . 48

2. Framework Algorithm 48

C. Framework-Based Algorithms 50

1. Notations of Framework Algorithms 50

2. 2D Packing Examples 51

IV WORST-CASE ANALYSES . 57

A. REA vs. RA . 57

1. Offline Algorithms . 58

2. Online Algorithms . 63

B. EA vs. SOPT . 66

1. Lower Bounds . 67

a. ENF . 67

b. EFF and EBF . 69

c. ESS . 70

d. EFFD and EBFD 72

2. Upper Bounds . 72

C. EA vs. OPT . 77

1. Unbounded Edge Length 77

2. Lower Bounds . 80

3. Upper Bounds . 80

a. Upper Bound for R∞
EFFD and R∞

EBFD 81

viii

CHAPTER Page

b. Upper Bound for R∞
EFF and R∞

EBF 82

V AVERAGE-CASE ANALYSES 89

A. Optimal Expected Waste 89

1. Relationship between EWOPT
n , λ and Λ 90

a. λ Is Outside of Cone Λ 90

b. λ Is on the Boundary of Cone Λ 93

c. λ Is Inside of Cone Λ 97

2. Multi-Dimensional Perfect Packing Theorem 97

3. Discrete Uniform Distribution 99

B. Theoretical Algorithms of Discrete Hyperbox Packing . . . 105

1. Grouping Packing (GP) Algorithm 106

2. Accumulative Packing (AP) Algorithm 108

C. Average-Case Analysis of Framework-Based Algorithms . . 109

D. Optimal Expected Waste of Continuous Hyperbox Packing 112

VI SUMMARY AND FUTURE WORK 118

A. Summary . 118

B. Future Work . 120

REFERENCES . 123

VITA . 134

ix

LIST OF FIGURES

FIGURE Page

1 An example of original bin packing. 3

2 Copying electronic files from computers to CDs. 5

3 An example of Next Fit. 10

4 An example of First Fit. 11

5 An example of Best Fit. 13

6 The level of bins. 14

7 An example of Sum of Squares. 15

8 Comparison of First Fit (Top) with First Fit Decreasing (Bottom). . 16

9 Comparison of Best Fit with Best Fit Decreasing. 18

10 An example of lower bound of performance ratio for Next Fit. 20

11 Packing example for R∞
FF ≥ 5/3 and R∞

BF ≥ 5/3. 22

12 Weighting function for the upper bound of R∞
FF and R∞

BF 27

13 Packing example for R∞
FFD ≥ 11/9 and R∞

BFD ≥ 11/9. 30

14 An example of R∞
SS ≥ 2. 33

15 An example of waste. 34

16 Overview of the extension framework. 39

17 Example of dth surface in 2D packing. 40

18 Example of d-adjacent in 2D packing. 41

19 Example of d-adjacent in 3D packing. 42

x

FIGURE Page

20 Example of d-pile and d-length in 2D packing. 43

21 Example of d-pile and d-length in 3D packing. 44

22 Example of virtual bins in 2D packing. 45

23 Framework algorithm. 49

24 Example of algorithm ENF in 2D packing. 51

25 Example of algorithm EFF in 2D packing. 52

26 Example of algorithm EBF in 2D packing. 53

27 Example of algorithm ESS in 2D packing. 54

28 Example of algorithm EFFD and EBFD in 2D packing. 55

29 The waste type wx and wy in EFFD(EBFD). 60

30 12 items of size (2, 2) packed into 3 bins of size (7, 7). 71

31 Add and re-arrange items. 87

32 Matrix equation Q1e
∗
1 = f ∗1 after Gaussian elimination. 102

33 Perfect configuration matrix in (D̄ + 1)-dimensional hypercube packing.103

34 Matrix equation QD̄+1e
∗̄
D+1 = f ∗̄D+1 after Gaussian elimination. 105

35 Grouping bin packing algorithm. 106

36 The waste type in 2D packing. 111

1

CHAPTER I

INTRODUCTION

Bin packing, that is, packing a list of items into minimal number of bins, is one

of the most popular theoretical research areas in the computer science field. Many

computer scientists and mathematicians devoted more than thirty years to studying

this problem and have published thousands of papers. Each year, a variety of pack-

ing problem arise and desperately need solutions. Meanwhile, novel techniques are

proposed [2], [14], [17], [18], [20], [51], [59],[62], [70],[73], [77] to solve existing open

packing problems. Bin packing, despite having been researched for decades, has never

lost its attraction for its followers.

Bin packing problems are popular because they are broadly applicable [3], [12],

[25], [41], [43], [44], [45], [57], [67], [74], [78], [80], [81]. Even though the problems

are theoretical, real-world problems that are abstracted, such as scheduling [9], [10],

[11], [16], [40], [50], [68], [65], are prevalent in everyday life. Real-world applications

may include shopping, scheduling appointments, making clothes, packing luggage,

and manufacturing furniture. Because of the wide applications, new understanding

of this problem can extensively change our life style.

Bin packing problems are also popular because they are challenging. Even the

simplest bin packing problem is NP-hard, which means no polynomial-time algorithms

can solve bin-packing problem unless P = NP. Since optimal solutions cannot prac-

tically be obtained, researchers mainly tackle this problem through approximation

techniques. One of the approximation techniques is to find asymptotic polynomial

time approximation scheme (APTAS), and many APTASs were found in 1D packing.

The journal model is IEEE/ACM Transactions on Networking.

2

In some variants of bin packing problem like multiple-dimensional packing, there even

do not exist APTAS [8], [7]. So far, many approximation algorithms have been pro-

posed, and they shed new light on understanding the bin packing problem. However,

the lack of standard criteria of evaluating those algorithms makes things even more

complicated. For instance, some people prefer using worst-case analysis to evaluate

the algorithms, while others like average-case analysis measurement.

A. Bin Packing Problem and Its Variants

The study of the original bin packing problem dates back to the early 1970’s. In this

problem, bins have identical one dimensional (1D) size B, and items have various 1D

size ai, where ai ≤ B. For each occupied bin, items inside can not be overlapped, and

the sum of the length of the items should be less than or equal to bin’s size B. The

goal of the problem is to find a packing configuration so that the number of used bins

is minimal. Figure 1 illustrates an example of the original bin packing problem. In the

example, big rectangles represent identical bins, small rectangles represent items of

various sizes, which are indicated by the integer numbers in the figure. The capacity

of bins are set as B = 5, 5 items of sizes 1, 2, 2, 3, and 4 are already packed into 3

bins, and 1 item of size 1 is being packed into the third bin.

The original bin packing problem could be classified as either on-line or off-

line depending on the occurrence of to-be-packed items. If each arriving item has to

be packed immediately before the next one comes, it is called on-line packing. On

the other hand, off-line packing has knowledge of all the to-be-packed items at the

beginning.

Nowadays, original packing problem has been widely extended [4], [5], [13], [15],

[19], [22], [26], [36], [42], [46], [60], [63], [66], [71], [76], [75]. Changing items’ size

3

2

2

1

3
4

1

Fig. 1. An example of original bin packing.

from deterministic to random yields stochastic packing. Such packing is usually

on-line, and items’ sizes are drawn from certain random distributions like uniform

distribution. Stochastic packing is often used to evaluate the expected performance

of packing algorithms. Restricting items’ size to be discrete instead of continuous

gives discrete packing, which is more suitable to model certain real life applications.

Even though their apparent difference looks small, discrete packing and continuous

packing are essentially distinct [27], and likely need quite different approaches for

algorithm analyses. Studying discrete packing not only aids to solve the corresponding

applications, but also produces more understanding on continuous packing. Changing

the sizes from 1 dimension to multi-dimensional hyperboxes, we get hyperbox packing

[47], [54], [69], [61]. To model real-world applications like metal cutting and truck

loading, hyperbox packing is necessary but creates much more difficulty than one

dimensional packing. Besides the above extension, other variant packings include

4

variable-size packing, which allows bins to have various size; packing with rotation

that allows items in multi-dimensional packing to be rotated, and some specified

constraint-packings that put more constraints on the packing process. For example,

some extensions restrict the maximum number of items in some bins. Others may

restrict that particular items can not be packed in the same bin.

The above extended packing problems can be combined properly and form a

new packing problem. For example, multi-dimensional packing, discrete packing, and

online packing may join together and become an online multi-dimensional discrete

packing; in which items are multi-dimensional hyperboxes with discrete edge length.

B. Real-World Applications

As stated before, real-world applications make bin packing problem popular in the

computer science area. In fact, existence of those applications is one of the major

reasons to study bin packing. To better understand the importance of researching

this problem, we next review those applications and explain how they relate to bin

packing.

1. 1D Applications

It’s often required for us to backup electronic files from computers to compact disks

(CD). Usually, the CDs have fixed size (700MB), while the electronic files are of

variable sizes. Figure 2 shows an example of copying computer files to CDs. A

natural goal in the example is to minimize the number of used CDs. Achieving the

goal needs a proper arrangement of recorded files, which is the same as arranging

items in bin packing. Comparison of Figure 1 with Figure 2 shows other similarities

between 1D bin packing and recording CDs; where electronic files are like items, CDs

5

are like bins, CDs could not hold files more than their capacity (700MB), and each

file should not be split into two CDs.

`

Fig. 2. Copying electronic files from computers to CDs.

The above CD recording example shows us how bin packing models real-life

applications, but it is only one instance from thousands of practical applications.

Similar examples include copying data to other removable media like floppy disks,

and storing items into bags that only have weight limitations. All those examples

could be categorized as storing-item field. Real-world applications also happen in

scheduling and stock-cutting. For example, scheduling television commercials is a

one-dimensional bin packing problem, in which commercial break-time is compared

to bins and available advertisements equal to items.

6

2. 2D Applications

Two dimensional bin packing could also be applied in three fields: item storing, stock-

cutting, and scheduling. Next, we illustrate a stock-cutting example: glass cutting.

As we know, windows protect houses from wind, bring light from outside, and

make our lives more comfortable. The major element of a window is glass, and you

might be surprised that the process of obtaining windows’ glass is related to bin

packing. Usually, glass factories produce many big sheets of glass called raw glass,

and windows’ glass is cut from each sheet according to windows’ size. Suppose that

n sheets of windows’ glass are needed to be cut, and that all windows are rectangles

but may have different sizes. To minimize the waste of glass, we usually prefer a

cutting scheme that uses minimum sheets of raw glass but produces all required

windows’ glass. The following comparison shows that this problem can be reduced

to 2D bin packing, in other words, solving 2D bin packing gives solutions to glass

cutting problem. Let’s consider sheets of raw glass as 2D bins, and windows’ glass

as 2D items. Note that the solution of 2D bin packing shows how to pack 2D items

into minimum number of 2D bins. Therefore, it indicates how to assemble windows’

glass into minimum sheets of glass that are smaller than raw glass. Reversing the

assembling process yields the desired cutting process, which minimizes the cutting

waste.

Besides glass cutting, other 2D stock cutting problems, like cutting cloth for

clothes, cutting metal for widgets, can be generalized by 2D bin packing. Actually,

manufacturing factories always need to solve similar problems, such as how to effi-

ciently lay out chips on VLSI board. In the fields of both scheduling and storing

items, 2D bin packing is also widely applied.

7

3. 3D Applications

Nowadays, global trade exchanges products between countries, and lowers our living

expense. Container loading plays an important role in global trade, especially in

the process of cargo transportation. In general, boxes of products are first packed

into containers, then the latter are placed on cargo ships for transportation. Given

thousands of product boxes, the packing that minimizes the number of containers

could save shipping cost, therefore, is preferred in practice. Container loading could

be obviously modeled by 3D bin packing; in which 3D items correspond to product

boxes and 3D bins comparable to containers. Also note that container loading and 3D

bin packing share similarities in many other aspects, which include: product boxes

can not be split into two containers; boxes can not be overlapped once packed; the

sum volume of being packed boxes in each container can not exceed the volume of

the container; and the number of used containers is minimum.

Other loading problems, like truck loading and train loading, are essentially the

same as container loading, and could be modeled by 3D bin packing.

C. Our Work

As shown in previous bin packing examples, many real-world applications like truck-

loading need to be modeled as hyperbox packing, in which items and bins are hyper-

boxes. Past research has focused more on 1D bin packing than on hyperbox packing,

and most results in this area are still limited to 1D packing. The goal of our work is

to extend many of those 1D results to hyperbox packing.

Our research work consists of three parts: extension framework and framework-

based algorithms, the worst-case analyses of framework-based algorithms, and the

average-case analyses of framework-based and optimal algorithms.

8

To widely extend approximation algorithms from 1D to multiple dimensions, we

aim at inventing a general approach to extend all existing 1D algorithms to hyperbox

packing. The first part of our work is the extension framework, which serves this

exact purpose. For any 1D discrete packing algorithm, our framework provides a

simple and general method that transfers it into a hyperbox-packing algorithm.

Applying existing 1D algorithms into the framework, we get many framework

based algorithms. It is natural to analyze the performance of those algorithms, and

compare their performance with that of their 1D counterparts. The second part of

the dissertation is called the worst-case analysis of framework-based algorithms. In

this part, we intensively focus on some classical framework-based algorithms, and

estimate their asymptotic worst-case ratios. The ratios shed light on the worst-case

performance of the framework-based algorithms, and also indicate how good our

framework is.

The third part is average-case analyses of packing algorithms through the mea-

sure expected waste. We analyze the expected waste on optimal algorithm, and reveal

that optimal expected waste, EWOPT
n , of discrete hyperbox packing can only take

three asymptotic forms Θ(1), Θ(
√

n), and Θ(n). Which form it takes depends on the

items’ size distribution and bins’ size. In this part, we also do average-case analyses

on framework-based algorithms. We apply popular 1D packing algorithms into the

framework, estimate their asymptotic expected wastes, and compare them with those

of 1D counterparts.

9

CHAPTER II

BACKGROUND

Recall that bin packing problem is NP hard, and that there is very likely no poly-

nomial time algorithmic solution. Computer scientists observed that the hardness of

the problem is mainly due to the strict goal, to use minimal number of bins. The

problem will become much easier if the goal is relaxed. For example, in CD recording

problem, it is difficult to find a solution that uses minimal number of CDs to record

given files, but is easier if the requirement for the minimal number is relaxed. In

real-world bin packing applications, the goal is to use the number of bins as small as

possible, and it is not critical to use the exact minimal number of bins.

Approximation algorithms were invented based on the above observation. They

are usually simple, easy-to-understand, of polynomial running-time, and have accept-

able performance. Next, we review some classical approximation algorithms for one

dimensional bin packing.

A. One-Dimensional Approximation Algorithms

1. Next Fit (NF)

Next Fit [52], [30] algorithm is one of the simplest packing algorithms, and works as

follows. In the whole packing process, only one bin is opened at any time. For each

to-be-packed item, the algorithm checks if the item could be fit in the opened bin or

not. If the opened bin has space for the item, Next Fit will pack the item into the

bin. Otherwise, the algorithm closes the bin, opens a new bin, and packs the item

into the newly opened bin.

Figure 3 shows an example on how Next Fit works against a bin packing instance,

10

1

6

3

4

2

2

5

Bin 1 Bin 2 Bin 3

Arrived order: 6, 4, 5, 2

The size of bins: 7

Fig. 3. An example of Next Fit.

where the size of bin is 7, three items of sizes 6, 4, and 5 are already packed into

existing bins. When next item of size 2 comes, only bin 3 is opened, while bins 1 and

2 are closed. Therefore, Next Fit will only check bin 3, finds that the bin has enough

space for the item, and will pack the item into the bin.

As shown in the above example, Next Fit is a simple and easy-to-be-implemented

algorithm. The algorithm has space-complexity O(1) since it only keeps one bin

open. For each arriving item, it only compares it with the opened bin, therefore, has

running time O(n), where n is the total number of to-be-packed items. However, its

performance is not as good as other classical approximation algorithms.

11

2. First Fit (FF)

Unlike Next Fit, First Fit [52], [30] leaves all partially filled bins rather than the last

one open. For each arriving item ai, it sequentially checks all open bins, and picks

the first one (lowest index) that has enough space for the item. If no such open bin

exists, which indicates none of the open bins has enough space for the arriving item,

First Fit opens a new bin and packs the item into the newly opened bin.

1

6

3

4

2

2

5

Bin 1 Bin 2 Bin 3

Arrived order: 6, 4, 5, 2

The size of bins: 7

Fig. 4. An example of First Fit.

Figure 4 shows a similar packing instance for First Fit, which could be compared

with Figure 3. In the example, items of sizes 6, 4, 5 were sequentially packed in bins

1, 2, and 3. When item of size 2 comes, First Fit will consider bins 1, 2, or 3 in

order, and check if the item could fit any of them. Note that bin 1 does not have

enough space, but bin 2 does have. Therefore, First Fit will use bin 2, which is the

12

first eligible bin, to pack the item, and does not consider bin 3.

First Fit is a straight-forward algorithm, and is also easy to-be-implemented. It

marks all partially-filled bins open, therefore, has space-complexity O(n), where n is

the number of to-be-packed items. In the case where each arriving item does not fit

into any existing open bins, First Fit has to compare each item with all open bins,

and open a new bin for the item. By using a binary tree data structure, the running

time of First Fit will be O(n log(n)).

3. Best Fit (BF)

Note that First Fit tries to pack each item ai into the first (lowest indexed) bin that

the item can fit into. Intuitively, there may exist better packing rules than favoring

the lowest index. Best Fit, favoring the partially filled bin that has the least, but

enough, space for item ai (ties broken by index), was proposed under this motivation.

Like First Fit, Best Fit [52], [30] keeps all partially-filled bins open and tries to

pack each item into the open bin that has enough, but least, space for the item. If

several bins have enough and least space, Best Fit makes ties broken by index. If no

opened bin has enough space for the item, the algorithm will open a new bin, and

put the item into the newly opened bin.

Figure 5 shows an example of how Best Fit works, where three items of size 6, 4,

and 5 were already packed into three bins of size 7. When next item of size 2 comes,

Best Fit keeps partially-filled bins 1, 2, and 3 open, and attempts to pack the coming

item into one of the three opened bins. Note that bin 3 has least and enough space

2 for the coming item. Therefore, Best Fit will use bin 3 to pack the coming item.

Like First Fit, Best Fit needs to keep all partially filled bins open, and needs

O(n) space, where n is the number of to-be-packed items. If all partially-filled bins

are maintained in a binary heap data structure, it will take O(log n) time to maintain

13

1

6

3

4

2

2

5

Bin 1 Bin 2 Bin 3

Arrived order: 6, 4, 5, 2

The size of bins: 7

Fig. 5. An example of Best Fit.

the data structure and to find the open bin (or decide to create a new bin) for each

arriving item. Therefore, Best Fit at most takes O(n log n) time to pack n items.

4. Sum of Squares (SS)

Note that First Fit and Best Fit are classical bin packing algorithms, which have

been widely-studied since the beginning of bin packing problems. It turns out that

the algorithms have acceptable worst-case performance, but their average-case per-

formance is not good enough, and needs to be improved. In the past, researchers tried

to find algorithms to beat FF and BF in average-case performance. Sum of Squares

(SS) is one such invented algorithm that achieves the objective.

Algorithm Sum of Squares [37], [38] is a little more complicated than First Fit

14

and Best Fit, and we need the following concepts and notations to better understand

the algorithm. It defines the level of a bin as the total size of all filled items in the

bin. For example, Figure 6 shows two bins of size 7, where bin 1 has two items of

sizes 2 and 4, bin 2 has three items of sizes 1, 2 and 2. In the example, the level of

bin 1 is total size of items of sizes 2 and 4, which is l = 2 + 4 = 6. Similarly, the level

of bin 2 is l = 1 + 2 + 2 = 5. The algorithms also uses notation N(l) to denote the

number of all partially filled bins with level l. In Figure 6, bin 1 has level 6, and bin

2 has level 5, therefore, N(1) = N(2) = N(3) = N(4) = 0, N(5) = N(6) = 1.

1

2

2

1

Bin 2

4

2

2

Bin 1

Fig. 6. The level of bins.

The algorithm uses utility function
∑B−1

l=1 N2(l), and tries to minimize the value

of the function when packing each arriving item. Figure 7 shows an example how the

Sum of Squares algorithm packs an item. In the example, items of sizes 6, 4, and 5

are packed into three bins of size 7. When item of size 2 comes, Sum of Squares could

possibly pack it into bin 2 or bin 3. If item is packed into bin 2, the value of the utility

function will be
∑

l = 16N2(l) = 22 +1 = 5, where N(1) = N(2) = N(3) = N(4) = 0,

N(6) = 2, and N(5) = 1. If item is packed into bin 3, the value of the utility function

15

will be
∑6

l=1 N2(l) = 1 + 1 = 2, where N(1) = N(2) = N(3) = N(5) = 0, and

N(6) = N(4) = 1. Since Sum of squares tries to minimize the value of the utility

function, it will use bin 3 to pack to the coming item of size 2.

1

6

3

4

2

2

5

Bin 1 Bin 2 Bin 3

Arrived order: 6, 4, 5, 2

The size of bins: 7

Fig. 7. An example of Sum of Squares.

Since algorithm Sum of Squares also keeps all partially filled bins open, its space

complexity is O(n). The analysis of its time complexity is a little tricky. Suppose that

the bins’ size is B, all available items’ sizes are 1, · · · , B. Recall that the algorithm’s

utility function,
∑B−1

l=1 N2(l), only depends on bins’ level l and their count N(l). For

each to-be-packed item of size a, the algorithm essentially only needs to find the best

level rather than the best specific bin to pack the item. It may go over all feasible

levels from 1 to B − a, compute the new values of utility function if the item of size

a is packed into the level, and then pick the level that has lowest value. Obviously,

16

the process will take at most time O(nB).

5. First Fit Decreasing (FFD)

First Fit Decreasing (FFD) algorithm is an offline bin-packing algorithm that has

pre-knowledge of all to-be-packed items’ sizes and order even before the packing

process. FFD takes advantage of the pre-knowledge, and sorts all to-be-packed items

in decreasing order based on their sizes. After all items are sorted, the algorithm uses

First Fit to packed the ordered items.

4

2

6

Bin 2

1

1

Bin 1 Bin 3

Arrived order: 4, 6, 1, 1, 2

The size of bins: 7

4

6

Bin 1

2

1

Bin 2

1

First Fit Decreasing

First Fit

Fig. 8. Comparison of First Fit (Top) with First Fit Decreasing (Bottom).

17

Figure 8 shows a packing example for FFD and FF. In the example, bins are of

size 7, and items of size 4, 6, 1, 1, 2 arrive in order. First Fit packs the items into

three bins as shown on the top of Figure 8. Regarding the FFD, all items are first

sorted by their sizes in decreasing order, which will make items arriving order as 6, 4,

2, 1, 1. After the sorting process, FFD uses First Fit to pack the sorted items, which

yields the packing configuration on the bottom of Figure 8. As we see, the sorting

process makes FFD use one less bin than FF.

To pack n items, the space complexity of FF and sorting process are both O(n),

which gives the space complexity of FFD as O(n). Note that the sorting process in

FFD can take O(n log n) time, and FF algorithm can take O(n log n) time. Therefore,

the time complexity of FFD is O(n log n).

6. Best Fit Decreasing (BFD)

Just like FFD, Best Fit Decreasing(BFD) also has pre-knowledge of to-be-packed

items, first sorts items by their sizes in decreasing order, and then uses BF to pack

the sorted items. Figure 9 compares how BFD and BF pack an item sequence, where

bins’ size is 7, and items’ sequence is: 4, 6, 1, 1, 2. In the example, both BF and

BFD use two bins to pack the 5 items. Also note that BF uses O(n) space and

O(n log n) time, and sorting process does not increase either space complexity or

time complexity. Therefore, the algorithm takes O(n log n) time and O(n) space as

well.

B. Worst-Case Analysis

Performance ratio is one of the most popular measures to evaluate approximation

algorithms’ performance. Denote by L the input list of items, by B the bin’s capacity,

18

4

1

6

Bin 2

1

2

Bin 1

Arrived order: 4, 6, 1, 1, 2

The size of bins: 7

4

6

Bin 1

2

1

Bin 2

1

Best Fit Decreasing

Best Fit

Fig. 9. Comparison of Best Fit with Best Fit Decreasing.

by A(L) the number of bins used by an approximation algorithm A, and by OPT (L)

the number of bins used by optimal algorithms. The performance ratio of A w.r.t.

L and B is defined as

RA(L, B) =
A(L,B)

OPT (L,B)
. (2.1)

19

Measure worst-case performance ratio RA(B) is the supremum of RA(L, B) for

all L. Precisely,

RA(B) = sup
L∈L

RA(L,B), (2.2)

where L is the set of all packing instance. The asymptotic worst-case perfor-

mance ratio R∞
A (B) is defined as

R∞
A (B) = lim sup

OPT (L)→∞
RA(L,B). (2.3)

Note that the above asymptotic worst-case ratio depends on bins’ size B. In some

cases, we use R∞
A = supB∈R R∞

A (B) to denote another form of asymptotic worst-case

ratio, which is independent of B. In this dissertation, we refer to both forms as

asymptotic worst-case ratio.

Note that it is very hard to get the exact value of worst-case performance ratio,

and past work usually tackled the problem from two perspectives: lower bound and

upper bound. Next, we review the two bounds of ratios for algorithms NF, BF, FF,

SS, FFD, and BFD.

1. Next Fit

Regarding the lower bound of R∞
NF , we may use the packing example as shown in

Figure 10, where bins’ size B is an even number, NB size-B/2 items and NB size-1

items come alternatively. In other words, items sequence is like: B/2, 1, B/2, 1, · · ·.
In this case, NF packs the items into NB bins as shown on the top of Figure 10,

while optimal algorithm packs the items into NB/2+N bins as on the bottom of the

Figure 10. Letting N go to infinity, we get the lower bound of R∞
NF as:

R∞
NF (B) ≥ lim

N→∞
NB

NB/2 + N
=

2

1 + 1/B
, (2.4)

20

which gives

R∞
NF ≥ sup

B∈N
R∞

NF (B) = 2. (2.5)

B/2

1

Arrived order: B/2, 1, , B/2, 1

The size of bins: B

Optimal packing

Next Fit

B/2

1

B/2

B/2

B/2

B/2

1

NB bins

NB/2 bins

1
1
1
1
1

1
1
1
1
1
1

N bins

Fig. 10. An example of lower bound of performance ratio for Next Fit.

To evaluate the upper bound of its worst-case performance ratio, we next revisit

the packing rule in NF. Recall that NF only opens one bin, and tries to use the opened

bin to pack each arrived item. If the arrived item does not fit into the bin, it will be

closed, and a new bin will be opened for the item. Based on NF’s packing rule, it is

obvious that the total size of packed items in bins 2i − 1 and 2i, where i = 1, 2, · · ·

21

should be strictly greater than bins’ size B. Therefore, in a packing configuration

of Next Fit that uses N bins, the total sizes of packed items should be greater than

(N−1)B/2. Note that optimal algorithms have to use at least (N−1)/2 bins to pack

those items, which gives the upper bound of the asymptotic worst-case performance

ratio of NF as:

R∞
NF ≤ lim

N→∞
N

(N − 1)/2
= 2. (2.6)

Based on (2.6) and (2.5), we get the tight bound for the asymptotic worst-case

performance ratio of NF as 2.

2. FF and BF

FF and BF are the most popular online-packing algorithms. However, it is much

harder to compute their worst-case performance ratios than NF. Next, we review

several packing examples to analyze their lower bounds, and go over how to use

weighting functions to evaluate the upper bounds.

a. Lower Bounds

Johnson et al. [53] showed some packing examples for BF and FF in continuous

packing. In this section, we will convert those examples into discrete integral packing,

and analyze their lower bounds. We may first consider the following discrete packing

example that has bins of size 6B, where B ≥ 15, and 6N items of size B−2, 6N items

of size 2B + 1, and 6N items of size 3B + 1 arrive in order. Notice that sizes B − 2,

2B + 1, and 3B + 1 could be packed into one bin of size 6B. Therefore, the above

18N items could be optimally packed into 6N bins, which is shown in the bottom of

Figure 11. On the other hand, the top part of Figure 11 demonstrates that FF and

BF will pack the first 6N items of size B − 2 into N bins, pack the the second 6N

22

items of size 2B + 1 into 3N bins, and pack the last 6N items of size 3B + 1 into 6N

bins. Therefore, FF and BF will use N + 3N + 6N = 10N bins to pack the items,

which makes the performance ratio of the packing example as:

R∞
FF ≥ R∞

FF (6B) ≥ 10N

6N
= 5/3. (2.7)

R∞
BF ≥ R∞

BF (6B) ≥ 10N

6N
= 5/3. (2.8)

B-2

Arrived order: B-2 (6N), 2B+1 (6N), 3B+1 (6N)

The size of bins: 6B

Optimal packing

First Fit or Best Fit

2B+1

6N bins

B-2

B-2

B-2

B-2

B-2

2B+1

3B+1

N 3N 6N

B-2

2B+1

3B+1

B-2

2B+1

3B+1

Fig. 11. Packing example for R∞
FF ≥ 5/3 and R∞

BF ≥ 5/3.

The above packing example could be extended to get a better lower bound as

follows. Define

t1 = 1 (2.9)

23

ti+1 = ti(ti + 1), for i = 1, 2, 3, · · · (2.10)

and let bins’ size be tkB with condition B ≥ tk ∗ (k − 1) + k, items are of k different

sizes, B − (k− 1), (tkB)/(tk−1 + 1) + 1, · · · , (tkB)/(ti + 1) + 1, · · · , (tkB)/(t1 + 1) + 1,

and each size has tkn items. The total ktkn items arrive in a non-decreasing order

for packing. Note that the sum of all the k different sizes are:

B − (k − 1) +
k−1∑

i=1

(
tkB

ti + 1
+ 1

)
(2.11)

= tkB

(
1

tk
+

k−1∑

i=1

1

ti + 1

)
(2.12)

= tkB

(
1

(tk−1 + 1)tk−1

+
1

tk−1 + 1
+

k−2∑

i=1

1

ti + 1

)
(2.13)

= tkB

(
1

tk−1

+
k−2∑

i=1

1

ti + 1

)
(2.14)

· · · (2.15)

= tkB
(

1

t2
+

1

t1 + 1

)
(2.16)

= tkB. (2.17)

Therefore, optimal packing algorithms for the above example should use tkn bins,

and form a perfect packing. However, FF and BF will use n bins for size B− (k− 1),

(tkn)/(tk−1 +1) bins for size (tkB)/(ti +1)+1, (tkn)/ti bins for size (tkB)/(ti +1)+1.

Therefore, the total number of bins used by FF and BF is:
∑k

i=1(tkn)/ti, which give

us the performance ratio for the example as:

R∞
FF ≥ R∞

FF (tkB) ≥
k∑

i=1

1

ti
. (2.18)

R∞
BF ≥ R∞

BF (tkB) ≥
k∑

i=1

1

ti
. (2.19)

24

Notice that

T∞ = lim
k→∞

k∑

i=1

1

ti
= 1.69103 · · · , (2.20)

which gives another lower bound for FF and BF.

The above lower bound could be further improved through the following example,

where bins’ size is B = 182N and N is an integer divisible by 17. Let δ = 18−2N , 1 ≤
i ≤ N/17, and δi = δ · 18(N/17)−i. For each i, we define the following coefficients:

a1,i = 1/6 + 33δi a5,i = 1/6− 13δi

a2,i = 1/6− 3δi a6,i = 1/6 + 9δi

a3,i = a4,i = 1/6− 7δi a7,i = a8,i = a9,i = a10,i = 1/6− 2δi,

and

b1,i = 1/3 + 46δi b5,i = 1/3 + 12δi,

b2,i = 1/3− 34δi b6,i = 1/3− 10δi,

b3,i = b4,i = 1/3 + 6δi b7,i = b8,i = b9,i = b10,i = 1/3 + δi,

and

c1,i = c2,i = c3,i = c4,i = c5,i = c6,i = c7,i = c8,i = c9,i = c10,i = 1/2 + δ.

The arriving items will be sequentially in three groups, and each group has 10N/17

items. For i = 1, · · · , N/17, the first group has items of sizes:

a1,1B, a2,1B, · · · , a10,1B, a1,2B, a2,2B, · · · , a10,2B, · · · , a1,iB, a2,iB, · · · , a10,iB, · · ·

25

Notice that the summation of the first 5 items in block i of group 1 is:

5∑

j=1

aj,iB =
(

5

6
+ 3δi

)
B, (2.21)

and the summation of the second 5 items in block i of group 1 is:

10∑

j=6

aj,iB =
(

5

6
+ δi

)
B. (2.22)

Therefore, FF and BF will pack the items in group 1 into 2N/17 bins.

The second group also has N/17 block, and each block has 10 items as follows:

b1,1B, b2,1B, · · · , b10,1B, b1,2B, b2,2B, · · · , b10,2B, · · · , b1,iB, b2,iB, · · · , b10,iB, · · ·

Notice that

b1,i + b2,i =
2

3
+ 12δi

b3,i + b4,i =
2

3
+ 12δi

b5,i + b6,i =
2

3
+ 2δi

b7,i + b8,i =
2

3
+ 2δi

b9,i + b10,i =
2

3
+ 2δi

Obviously, FF and BF will pack the 10 items of block i in group 2 into 5 bins, and

the total number of bins used for group 2 is 5N/17.

The third group has N/17 blocks, the 10 items in each block is:

c1,1B, c2,1B, · · · , c10,1B, c1,2B, c2,2B, · · · , c10,2B, · · · , c1,iB, c2,iB, · · · , c10,iB, · · ·

FF and BF will have to pack each item in group 3 into a single bin, and use totally

10N/17 bins. Therefore, the total number of bins used by FF and BF for the above

26

items in the three groups is:

2N

17
+

5N

17
+

10N

17
= N. (2.23)

Next, we consider the following combination, and show how optimal algorithms

pack the above 30N/17 items. Notice that

aj,i + bj,i + cj,i = 1− δi + δ ≤ 1, where 3 ≤ j ≤ 10, 1 ≤ i ≤ N

17
,

a1,i + b2,i + c1,i = 1− δi + δ ≤ 1 where 1 ≤ i ≤ N

17
,

a2,i + b1,(i+1) + c2,i = 1− 4δi

9
+ δ ≤ 1− 8δ, where 1 ≤ i ≤ N

17
− 1,

a2,N/17 + b1,1 =
1

2
− 3δ + 46δ1 < 1

c2,N/17 =
1

2
+ δ < 1.

Using the above combination, we can pack the 30N/7 items into 8N/17 + N/17 +

N/17− 1 + 1 + 1 = 10N/17 + 1 bins. Therefore, the performance ratio of FF and BF

for the above packing example is:

RFF (B) = RFF (182N) ≥ N

10N/17 + 1
=

17

10 + 17/N
, (2.24)

RBF (B) = RBF (182N) ≥ N

10N/17 + 1
=

17

10 + 17/N
. (2.25)

As N →∞, the lower bound of the ratio is:

R∞
FF = lim sup

B→∞
RFF (B) ≥ 1.7,

R∞
BF = lim sup

B→∞
RBF (B) ≥ 1.7.

b. Upper Bounds

Johnson et al. [53] showed that the worst-case performance ratios for FF and BF are

upper bounded by 1.7. Next, we briefly review how the upper bound is achieved, and

27

get familiar with the weighting function used in the proof, which will be extended in

this dissertation.

To get the upper bound, we may use the following weighting function f(x) as

illustrated in Figure 12.

f(x) =

6
5B

x x ∈ [0, B
6
]

9
5B

x− 1
10

x ∈ [B
6
, B

3
]

6
5B

x + 1
10

x ∈ [B
3
, B

2
]

1 x ∈ (B
2
, B]

, (2.26)

where B is the bins’ size.

1/5

1/2

7/10

1

B/6 B/3 B/2 B

x

f(x)

Fig. 12. Weighting function for the upper bound of R∞
FF and R∞

BF .

The main purpose of the weighting function is to connect the number of bins

used by FF(BF) and optimal algorithms. The connection is shown in the following

two lemmas.

28

Lemma 1 For any set of items ai that are packed in a single bin of size B, their

total weight
∑

f(ai) is less than or equal to 1.7.

Lemma 2 For a list of to-be-packed items L, the number of bins used by FF and BF

are:

FF (L,B) ≤ ∑

i∈L

f(ai) + 3. (2.27)

BF (L,B) ≤ ∑

i∈L

f(ai) + 3. (2.28)

For a packing list L of items ai, lemma 1 indicates that the number of bins used

by optimal algorithm is:

∑

i∈L

f(ai) ≤ 1.7OPT (L,B). (2.29)

Combining the above inequality with lemma 2 gives us the upper bounds of R∞
FF and

R∞
BF as:

R∞
FF = sup

B∈R
lim sup

OPT (L,B)→∞

FF (L,B)

OPT (L,B)
≤ 1.7. (2.30)

R∞
BF = sup

B∈R
lim sup

OPT (L,B)→∞

BF (L,B)

OPT (L,B)
≤ 1.7. (2.31)

For the detailed proof of the above two lemmas, please refer to [53].

3. FFD and BFD

Recall that FFD and BFD are offline algorithms, and that they first sort items in non-

decreasing order, then pack the sorted items using FF and BF algorithms respectively.

Next, we briefly review the lower bound and the upper bound of their asymptotic

worst-case performance ratios.

29

a. Lower Bounds

The lower bounds of the ratios could be achieved via the following packing example,

where bins’ size is B such that B mod 4 = 0 and B ≥ 44. The arriving items are of

four different sizes as follows.

(
B

2
+ 1

)
,

(
B

4
+ 2

)
,

(
B

4
+ 1

)
,

(
B

4
− 2

)
. (2.32)

The first three sizes have 6N copies, and the last one has 12N copies. Note that FFD

and BFD first sort the items in non-decreasing order, and will pack items into 11N

bins as shown in top of Figure 13. On the other hand, the summation of the first,

third, and last sizes is:

(
B

2
+ 1

)
+

(
B

4
+ 1

)
+

(
B

4
− 2

)
= B, (2.33)

and that the summation of two copies of the second and the last sizes is:

2
(

B

4
+ 2

)
+ 2

(
B

4
− 2

)
= B. (2.34)

Therefore, optimal algorithms will pack the items into 9N bins as shown in the bot-

tom of Figure 13. This gives us the lower bounds of FFD’s and BFD’s worst-case

performance ratio as:

R∞
FFD ≥

11

9
, (2.35)

R∞
BFD ≥

11

9
. (2.36)

30

1+B/2

Arrived order: 1+B/2 (6N), 2+B/4 (6N), 1+B/4 (6N), -2+B/4 (12N)

The size of bins: B, such that, B mod 4=0, B ≥44

Optimal packing

First Fit Decreasing or Best Fit Decreasing

2+B/4

6N 2N 3N

1+B/2

-2+B/4

1+B/4

2+B/4

-2+B/4

-2+B/4

2+B/4

6N 3N

1+B/4

1+B/4

1+B/4

-2+B/4

-2+B/4

-2+B/4

-2+B/4

Fig. 13. Packing example for R∞
FFD ≥ 11/9 and R∞

BFD ≥ 11/9.

b. Upper Bounds

Using more than 70 pages in his dissertation, Johnson [52] showed the relationship

between FFD and optimal packing as:

FFD(L,B) ≤ 11

9
OPT (L,B) + 4, ∀L,B (2.37)

Later Baker [6] simplified the proof and reduced the constant from 4 to 3, and got

result

FFD(L,B) ≤ 11

9
OPT (L,B) + 3, ∀L,B (2.38)

31

and Yue [79] further significantly improved the proof and reduced the constant to 1,

which is:

FFD(L,B) ≤ 11

9
OPT (L,B) + 1. ∀L,B (2.39)

Regardless of the constants in the inequalities, all the results indicate

R∞
FFD = sup

B∈R
lim

OPT (L,B)→∞
FFD(L, B)

OPT (L,B)
≤ 11

9
. (2.40)

Regarding BFD, Johnson [52], [53] showed that BFD(L) ≤ FFD(L) if no to-

be-packed item is smaller than B/6. Therefore, if each item ai in packing list L meets

condition ai ≥ B/6, we have:

BFD(L) ≤ FFD(L) ≤ 11

9
OPT (L) + 1, ∀ai ∈ L s.t. ai ≥ B

6
. (2.41)

In the case where to-be-packed items include size less than B/6, we need the following

two case-analyses. In case 1, all those items of size less than B/6 do not start a new

bin in BFD, and we still have:

BFD(L) ≤ FFD(L) ≤ 11

9
OPT (L) + 1. (2.42)

On the other hand, if any item of size less than B/6 starts a new bin, then all bins

except the last one must be 5/6 full, therefore,

BFD(L) ≤ 6

5
OPT (L) + 1. (2.43)

Combining inequalities (2.41), (2.42), and (2.43), we have:

R∞
BFD ≤

11

9
. (2.44)

32

4. Sum of Squares

a. Upper Bounds

Csirik et. al. [38] showed that the performance ratio of sum of squares (SS) is upper

bounded by 3.0, which is further improved to 25/9 in [39].

b. Lower Bounds

To get a lower bound of worst-case performance ratio of SS, we may use the following

packing example, where bins’ size is 2B + 1, and there are B(B + 1)N items. In

optimal packing, B items will be packed into a single bin, and it uses (B + 1)N bins

as shown on the top of Figure 14.

Recall that SS tries to minimize the sum of the squares of the number of packing

levels
∑2B

l=1 N2(l). In the packing example, SS will produce levels 2i, where i =

1, · · · , B. To minimize the sum of the square, the number of each level should be

the same, which is 2N . SS uses 2BN bins as shown in the bottom of Figure 14.

Therefore, the performance ratio of SS is:

R∞
SS(B) ≥ lim

N→∞
2BN

(B + 1)N
=

2B

B + 1
, (2.45)

which further indicates

R∞
SS = sup

B∈R
R∞

SS(B) ≥ 2. (2.46)

C. Average-Case Analysis

In the average-case analysis of bin packing algorithms, expected waste is a primary

measure used to evaluate the algorithms’ typical behavior. Next, we first review

the notation of expected waste, and then present the expected waste for optimal

33

2

Arrived order: B(B+1)N items, each of single size 2

The size of bins: 2B+1

Optimal packing

Sum of Square Packing

2N

2

2

2

2

2

2

2

2

2

2N 2N

2

2

2

2

2

(B+1)N

2BN bins

Fig. 14. An example of R∞
SS ≥ 2.

algorithm, and First Fit and Best Fit.

1. Notations

Recall that the waste of a packing is referred to the waste area in the packing. Figure

15 shows an example of waste, which is marked as the shaded areas in the figure. In

the example, the waste is 1 for bin 1, 3 for bin 2, and 2 for bin 3. The total waste for

all three bins is: 1 + 3 + 2 = 6.

To evaluate the typical behavior of packing algorithm A, researchers normally

34

1

6

3

4

2

5

Waste

Bin 1 Bin 2 Bin 3

Fig. 15. An example of waste.

first select some distribution, then independently generate n random sizes (items)

under the distribution, and finally estimate the expectation of the total waste of the

packing after algorithm A packs the n items. The expectation of the waste is referred

as expected waste, and denoted by EWA
n .

For discrete packing, the most popular distribution for expected waste is called

discrete uniform distribution U{J,B}, where each size i, i = 1, · · · , J , arrives with

equal probability λi = 1/J .

For example, if items are randomly chosen from set {4, 5} with equal probability

p = 0.5, and bin’s size is 7, algorithm FF or BF has to pack each item into one bin.

The waste for a single bin that packs size 4 is 7− 4 = 3, and for each bin that packs

size 5 is 7 − 5 = 2. Since items’ sizes could either be 4 or 5 with equal probability

p = 0.5, we have the expected waste for algorithm FF and BF as:

EW FF
n = EWBF

n = (3 ∗ 0.5 + 2 ∗ 0.5)n = 2.5n. (2.47)

35

2. Expected Waste of OPT

Recall that optimal algorithms use the minimum number of bins, and it may also

have waste for some packing list. We denote its expected waste by EWOPT
n .

a. Asymptotic Forms of EWOPT
n

Courcoubetis et al. [33], [34], [35] analyzed EWOPT
n in the following problem: bins’

size is B, items’ sizes are independently and randomly chosen from integral set

{1, · · · , J}, J ≤ B, with PMF:

P [L = i] = λi, (2.48)

where i = 1, · · · , J , λi ≥ 0, and
∑J

i=1 λi = 1.

In the problem, there are total J possible items, and some combinations of these

items could be perfectly packed into a single bin without any waste. Noticing that the

perfect combinations are closely related to the EWOPT
n , Courcoubetis et al. defined

a perfect configuration as a tuple of size J . Precisely, it is:

ck = (ck[1], · · · , ck[J]), (2.49)

where
∑J

i=1 ick[i] = B, and ck[i] ∈ Z+ ⋃{0}. Suppose that there are total K such

perfect configurations, they further defined a perfect packing matrix as:

Q = (c1, c2, · · · , cK), (2.50)

and denoted by Λ = {Qf : f ≥ 0} the cone spanned by Q.

Using the above notations, they analyzed optimal expected waste EWOPT
n , and

showed that EWOPT
n can only take three asymptotic forms. Precisely,

• EWOPT
n = Θ(1) if the probability tuple λ = (λ1, · · · , λJ) is in the interior of

36

cone Λ

• EWOPT
n = Θ(

√
n) if λ lies on the boundary of Λ

• EWOPT
n = Θ(n) if λ is outside of Λ.

b. EWOPT
n Under U{B − 2, B}

As shown in the previous section, optimal expected waste is closely related to packing

configurations, which generate the cone Λ. To estimate the optimal expected waste

under discrete distribution, Coffman et al. studied the perfect packing configurations,

and developed a perfect packing theorem as follows.

Theorem 3 In a bin packing problem, bins’ size is B and maximum item’s size is

J , J ≤ B. One can perfectly pack a list L consisting of RJ items, R each of size 1

through J into bins if and only if the sum of the RJ item sizes is a multiple of bins’

size B.

The theorem gives a condition under which items could be perfectly packed

into bins. Coffman further used the perfect packing theorem and showed that the

probability tuple under distribution U{B − 2, B} is in the cone of Λ, spanned by the

perfect packing matrix. Therefore, we have:

EWOPT
n = Θ(1), (2.51)

under distribution U{B − 2, B}.

3. Theoretical Packing Algorithm

Recall that Λ = {Qf : f ≥ 0} is a cone spanned by a perfect-packing matrix. If

items’ size distribution λ ∈ Λ and items’ arriving process is Poisson, Courcoubetis et

37

al. [33], [34] presented an approximation algorithm A with

EWA
n = Θ(EWOPT

n) (2.52)

Even though the algorithm does not need to know λ, and has polynomial running-

time with the number of items n; it is too complicated and is only of theoretical

interest.

4. Expected Waste of FF and BF

Past works also analyzed the expected waste of FF and BF under discrete uniform

distribution.

Coffman et al. [29] proposed the approach of multi-dimensional Markov Chains.

Kenyon et al. [56] then applied the method and found EWBF
n = Θ(1) under the dis-

tribution U{B−2, B}. Albers et al. [1] further applied the Markov Chain technique

to First Fit and showed that EW FF
n = Θ(1) under distribution U{B − 2, B}.

5. Expected Waste of SS

Regarding algorithm SS, Csirik et al. [38] showed that

• EW SS
n = O(

√
n) if EWOPT

n = O(
√

n),

• EW SS
n = O(log n) or O(1) if EWOPT

n = O(1).

Csirik et al. [38] also presented a variant online algorithm SS? based on SS, and

showed that EW SS?

n = Θ(EWOPT
n). Algorithms SS and SS? are more practical than

the algorithms in [33] and [34], because they are simpler and easier to implement.

38

CHAPTER III

EXTENSION FRAMEWORK

As shown in the previous chapter, there exist many 1D packing algorithms with well

analyzed performance. For example, the asymptotic worst-case performance ratio for

FF and BF is 1.7, for FFD and BFD is 11/9. The problem of whether or not we

can apply these algorithms to higher-dimensional packing is of great interest. Our

extension framework that will be presented in this section is to serve this purpose.

Our extension framework is a hyperbox packing algorithm that takes two inputs:

1) 1D packing algorithms like FF, BF etc. 2) hyperbox packing instance, and outputs

a packing solution for the packing instance. An overview of the framework is shown

in Figure 16.

The extension framework offers at least the following three benefits:

• It shows the possibility of extending 1D algorithms and their analyses to higher

dimensional packing

• It provides a general platform for the extension

• It produces many effective multi-dimensional packing algorithms

Next, we will introduce some framework-related concepts, then present how the

framework works, and finally go over some framework-based algorithms.

A. Framework-Related Concepts and Notations

To better understand our framework algorithm, we will need the following concepts

and definitions.

39

Extension Framework

1D packing

algorithm like:

FF, BF, FFD, BFD

To-be-packed

Hyperbox-items

Hyperbox-bins’

size information

Packing Instace

Hyperbox Packing

Solution

Fig. 16. Overview of the extension framework.

1. dth Surface of Hyperbox

We refer to the surface of a D-dimensional hyperbox as a hyperplane of D−1 dimen-

sions. The dth surface, where d = 1, · · · , D, of a hyperbox is the surface normal to

dimension d. Note that for each D-dimensional hyperbox, there exist two dth surfaces

as follows:

xd = c, (3.1)

xd = c + ld, (3.2)

where ld is the edge length of the hyperbox in the dth dimension. In the dissertation,

the dth surface refers to the one in equation (3.1), which is the left or bottom surface

40

in 2D case. Figure 17 shows an example of the dth surface in 2D packing.

Dimension 1

Dimension 2
1
st
 surface

2
nd
 surface

Fig. 17. Example of dth surface in 2D packing.

2. d-Adjacent

The first concept in our framework is d-adjacent, which is closely related to the order

of the items’ dimensions. The formal definition of d-adjacent is:

Definition A.1 In a D-dimensional hyperbox packing, we mark the order of the

dimensions arbitrarily. Two items are said to be d-adjacent, d = 1, · · · , D, if they

meet the following three conditions: 1) they are adjacent to a surface S that has

dimension D− 1, 2) the dth dimension is perpendicular to surface S, and 3) the two

items have the same edge-length in the ith dimension where i = 1, · · · , d− 1.

Figure 18 gives an example of d-adjacent in 2 dimensional packing, where bins

and items are rectangles. In the example, items have 2 dimensions, the first dimension

41

(dimension X) is horizontal, and the second one (dimension Y) is vertical.

A

B

C
D

E

SAB SAC SCD

SDE

Dimension 1

X

Y

Dimension 2

Fig. 18. Example of d-adjacent in 2D packing.

Note that items A and B touch together, and 1) have a common surface SAB,

2) the second dimension (dimension Y) is perpendicular to surface SAB, and 3) items

A and B have the same width (same edge length in the first dimension). Therefore,

items A and B are 2-adjacent in the packing example. Items D and E have different

edge length in the first dimension, and so do not meet the condition 3 in definition

A.1. Therefore, they are not 2-adjacent. Items A and C touch together and share a

common surface SAC , and the surface is normal to the first dimension (dimension X).

Therefore, they are 1-adjacent. Similarly, items C and D are also 1-adjacent.

42

We next check the adjacent items in a 3D bin packing as shown in Figure 19.

In the example, 3D-items A and B 1) share a common surface, 2) the surface is

perpendicular to dimension 3, and 3) they have the same edge length in dimensions

1 and 2. Therefore, items A and B are 3-adjacent. Similarly, items A and D are

2-adjacent, and items A and E are 1-adjacent. However, items B and C are not 3-

adjacent since their edge lengths in dimension 2 are not the same. Similarly, items D

and F are not 2-adjacent because their edge lengths in dimension 1 are not the same.

A

B

D E

C

F

G

Dimension 2

Dimension 3

Dimension 1

A

Fig. 19. Example of d-adjacent in 3D packing.

43

3. d-Pile and d-Length

The next concept that will be frequently used in our framework is called a d-pile,

and its edge-length in the dth dimension is called d-length. d-pile is a sequence of

d-adjacent items. Precisely,

Definition A.2 In a hyperbox packing with D dimensions, d-pile is a sequence of

either hyperbox-items or (d + 1)-piles, in which each item or (d + 1)-pile except the

first one is successively d-adjacent to previous one.

A

B

C
D

E

Dimension 1
X

Y

Dimension 2 2-pile 1-pile

2-length 1-length

Fig. 20. Example of d-pile and d-length in 2D packing.

The edge length of d-pile in dth dimension is referred as d-length. Its formal

definition is:

44

A

B

G

C

H

I

D

E

F

J

K M
L

3-pile 2-pile

1-pile

3-length
2-length

1-length

2-pile 2-length

Dim 1

Dim 2

Dim 3

Fig. 21. Example of d-pile and d-length in 3D packing.

Definition A.3 In a d-pile P , its d-length refers to the sum of the edge-lengths of

all pile-items in dimension d.

In Figure 20, items A and B form a 2-pile since A and B are 2-adjacent. Items

C and E form a 2-pile since they are 2-adjacent. Also notice that items C, D, and E

form a 1-pile, because the 2-pile consisting of items C and E, item C, and item D are

1-adjacent.

Figure 21 gives a few examples of d-pile and d-length in 3D packing, where all

d-piles and d-lengths are marked and noted correspondingly. In the example, items

A and B form a 3-pile since they are 3-adjacent, items C and D form a 2-pile since

they are 2-adjacent, items E and F are 1-adjacent since they share a common surface.

Note that items I and H form a 3-pile, which again with item G forms a 2-pile, items

J, K, L form a 2-pile, which along with item M forms a 1-pile.

45

4. Virtual Bin

The last concept is virtual bin, which is associated with some d-pile.

Definition A.4 In a hyperbox-bin of size B = (B1, B2, · · · , BD), for any d-pile P of

d-length l, its associated virtual bin is a 1D bin of size Bd that is partially filled 1D

item of size l.

A

B

C
D

E

Dim 1

Dim 2

Virtual bin associated

with 2-pile consisting

items A and B

Virtual bin associated

with 1-pile consisting

items C, D and E

Fig. 22. Example of virtual bins in 2D packing.

Figure 22 gives examples of virtual bins on 2D packing. Items A and B form a

2-pile, and its virtual bin is shown on the left of the figure. Items C, D, and E form

a 1-pile, and its virtual bin is shown at the bottom of the figure.

46

B. How Does the Extension Framework Work?

1. Key Points

The basic idea of the framework is to use strip packing rule, convert hyperbox packing

problem into 1-dimensional packing problem, and apply 1D packing algorithm on the

divided 1D packing problem. Following lists some key points on our framework.

a. Strip Packing Constraint

In a hyperbox packing, we refer the Strip Packing rule to the requirements that any

items that share a common surface S of dimension D−1 should be d-adjacent, where

surface S is normal to dimension d, and d = 1, · · · , D.

Our framework should strictly follow the strip packing rule. Precisely, any two

items that share a surface of dimension D − 1 that is normal to dimension d are

d-adjacent, where d = 1, · · · , D.

b. Pile Length Constraint

In each occupied hyperbox-bin, items packed by framework will form many d-piles,

where d = 1, · · · , D. The d-length of the piles should be less than or equal to the

edge length Bd of hyperbox-bin in dth dimension.

c. Offline Sorting

If input algorithm in Figure 16 is an offline algorithm like FFD or BFD, framework

will sort the input hyperbox items on the D edge lengths via lexicographical order.

Precisely, for two hyperbox item a = (l1, l2, · · · , lD), and a′ = (l′1, l
′
2, · · · , l′D), we define

1) a = a′ if and only if ld = l′d,∀d = 1, · · · , D.

47

2) a < a′ if and only if ∃k, 1 ≤ k ≤ D such that lk < l′k, and ∀d = 1, · · · , k−1, ld =

l′d.

3) a > a′ if and only if ∃k, 1 ≤ k ≤ D such that lk > l′k, and ∀d = 1, · · · , k−1, ld =

l′d.

For example, for 3D items of sizes

a1 = (3, 2, 1),

a2 = (1, 3, 4),

a3 = (2, 1, 3),

a4 = (2, 2, 1),

the decreasing order of the items will be: a1, a4, a3, a2.

d. Dimension Ordering

The order of dimensions is critical to the framework packing process. Once a to-be-

packed item arrives, framework will test dimensions d = D, D−1, · · · , 1 in order, and

check if the item could be d-adjacent to any existing d-pile.

At the beginning, if there exists any such D-pile, the to-be-packed item will be

packed into one such pile, and packing process stops. Otherwise, framework will

check if there are any (D − 1)-piles that the item could be (D − 1)-adjacent. If such

(D − 1)-piles do exist, framework will pick one of them, and pack the item in the

following way: a) the item will be (D− 1)-adjacent to the pile, b) the D-surface that

is normal to dimension D will be adjacent to the D-surface of the hyperbox-bin. If

no such (D−1)-piles exist, framework will use the similar pattern to check dimension

D − 2, D − 3, · · · , 1.

Generally, for d = D − 1, · · · , 1, if no D,D − 1, · · · , (d + 1)-pile exists for the

48

to-be-packed item, then the d-piles will be checked. If there exist any such d-pile,

framework will choose one of the d-piles, and pack the item d-adjacent to the pile,

and the d′-surface, where d′ = D, D− 1, · · · , d + 1, of the item will be adjacent to the

d′-surface of the bin.

e. Use 1D Algorithm and Virtual Bin to Choose d-Pile

Suppose that framework is trying to pack an item of size (l1, l2, · · · , lD) into a bin,

and the item could not be d′ = D, D− 1, · · · , (d+1)-adjacent to existing piles. When

framework checks dimension d, it finds that there exist more than one d-pile that the

item could be d-adjacent. In this case, which d-pile the framework should choose for

the item?

In the above case, let’s assume there are N eligible d-piles, P1, P2, · · ·PN for the

item, and framework will choose pile via the following approach. It will first identify

virtual bins for piles P1, · · · , PN , then apply 1D algorithm in Figure 16 to pack 1D

item of size ld to the available virtual bins, which should find a virtual bin. The d-pile

associated with the virtual bin will be the one that framework will use.

During d-pile choosing process, if 1D algorithm (like Next Fit) closes any virtual

bin, the associated d-pile will never be considered as eligible candidate for any future

items.

2. Framework Algorithm

The framework algorithm is listed as Figure 23.

49

Input: 1) a hyperbox packing instance I with D dimensions,

2) 1D packing algorithm A.

Output: a hyperbox packing solution to the instance I

1. If algorithm A is offline (like FFD, and BFD), and needs to sort input items before

packing, framework will sort the input hyperbox-items based on their edge lengths

in lexicographical order.

2. For each arrived item at of size (l1, l2, · · · , lD)

3. For d = D,D − 1, . . . , 1

4. If there exist N eligible d-piles P1, P2, · · · , PN that at could be d-adjacent to then

5. Identify the virtual bins associated with piles P1, P2, · · · , PN

6. Apply 1D algorithm to 1D packing problem where bins size is Bd, and item’s

size is ld, and choose a virtual bin. If the 1D algorithm closes any virtual

bin, the associated d-pile will never be considered as a candidate in step 4.

7. Pack at d-adjacent to the chosen d-pile. The surface of at in dimension

d′ = d + 1, . . . , D should be adjacent to the d′th surface of hyperbox bin.

8. Go to step 2.

9. End If

10. End For

11. Open a new hyperbox-bin, and pack at in the new bin such that the ith surface

of at is adjacent to the ith surface of the bin, where i = 1, · · · , D.

12. End For

Fig. 23. Framework algorithm.

50

The following scenario illustrates how our framework packs D-dimensional items.

Suppose a hyperbox-item at of size (l1, · · · , lD−1, lD) arrives. Our framework will first

search for all D-piles of D-length ≤ (BD − lD), and of size (l1, · · · , lD−1) in the first

(D − 1) dimensions. If the D-piles do exist, it then puts at D-adjacently to one

of the hyperbox-piles, which is chosen by applying some 1D packing algorithm like

FF, BF, FFD, or BFD on their D-lengths. Otherwise, the framework will search all

(D− 1)-piles of (D− 1)-length ≤ (BD−1− lD−1), and of size (l1, · · · , lD−2) in the first

(D− 2) dimensions. If the (D− 1)-piles do exist, one pile will be picked up using 1D

packing algorithm, and at will be (D− 1)-adjacent to the pile and D-adjacent to the

surface of the bin that contains the pile. If no (D − 1)-pile is found, a similar rule

will be recursively applied until reaching the first dimension. If no 1-pile of 1-length

≤ (B1− l1) exists, then a new hyperbox-bin will be opened, and at will be d-adjacent

with d = 1, · · · , D, to the surface of the newly opened bin.

C. Framework-Based Algorithms

In this section, we will first list frequently discussed framework-based algorithms, and

then give some 2D and 3D packing examples of these algorithms.

1. Notations of Framework Algorithms

As shown before, framework provides a general approach of using 1D packing algo-

rithms to hyperbox packing problem. To better differentiate the 1D algorithm and

framework algorithms, we put a prefix E to the front of 1D algorithms, and mark them

as framework-based algorithms. For example, EBF, and EFF are the corresponding

framework algorithms for 1D algorithms Best Fit and First Fit. Table I lists the

framework based algorithm that we will frequently reference in this dissertation.

51

Table I. Notation of framework algorithms used in this dissertation.

Framework Algorithm 1D Algorithm Description

ENF NF Next Fit Packing

EFF FF First Fit Packing

EBF BF Best Fit Packing

ESS SS Sum of Squares Packing

EFFD FFD First Fit Decreasing

EBFD BFD Best Fit Decreasing

2. 2D Packing Examples

To better understand how framework works, we next give a 2D packing instance, and

check how framework-based algorithms ENF, EFF, EBF, ESS, EFFD, and EBFD

pack the instance. In the example, bins’ size is 7 × 5, which has width 5 and height

7. The item list is: 3× 2, 3× 6, 3× 4, 2× 4, 2× 5, 2× 1, and 2× 3.

3X2

3X6

2X3

2X5
3X4

2X1

2X4

Bin 1 Bin 2 Bin 3 Bin 4

Arrived order: 3x2, 3x6, 3x4, 2x4, 2x5, 2x1, 2x3

The size of bins: 5x7

Fig. 24. Example of algorithm ENF in 2D packing.

52

3X2

3X6

2X3

2X5

3X4
2X1

2X4

Bin 1 Bin 2 Bin 3

Arrived order: 3x2, 3x6, 3x4, 2x4, 2x5, 2x1, 2x3

The size of bins: 5x7

Fig. 25. Example of algorithm EFF in 2D packing.

Figure 24 shows the packing solution for ENF, where it uses 4 bins. Obviously,

the first item of size 3× 2 will be packed into the first bin. When the second item of

size 3× 6 comes, ENF checks the 2-pile and 1-pile in bin 1, and realizes that neither

of them could be d-adjacent to the arriving item. Therefore, ENF closes the virtual

bins associated with 2-pile and 1-pile in bin 1, and opens bin 2 for the item. Similarly,

when the item of size 3 × 4 comes, virtual bins associated with 1-pile and 2-pile in

bin 2 are also closed, and bin 3 is opened for the item of size 3× 4. Next, when item

of size 2 × 4 comes, ENF could not pack it into either bin 1 or bin 2, because the

associated virtual bins are all closed. In this case, ENF packs it into bin 3. When

next item of size 2×5 comes, EFF closes the virtual bin associated with item 2×4 in

bin 3, and opens a bin 4 for the arriving time. Using the similar pattern, ENF packs

the rest items of sizes 2× 1, and 2× 3 into bin 4.

Figure 25 shows how EFF packs the 2D instance. Like in ENF, the first two

53

items of sizes 3× 2 and 3× 6 are packed into bins 1 and 2. However, since FF does

not close partially-filled bins, virtual bins associated with the 2-pile and 1-pile in bin

1 are not closed. When item of size 3 × 4 comes, EFF will pack it 2-adjacent to the

2-pile of size 3× 2 in bin 1. When next item of size 2× 4 comes, EFF could not find

any eligible 2-pile, but has two candidate 1-piles in bins 1 and 2 that the arriving item

could be 1-adjacent. EFF chooses the first 1-pile in bin 1, and makes it 1-adjacent to

item of size 2× 4. Items of size 2× 1 is also packed into bin 1, and 2-adjacent to the

2-pile of size 2 × 4 because the 2-pile is the first candidate. Similarly, the rest two

items of sizes 2× 5 and 2× 3 are packed into bins 2 and 3 respectively.

3X2

3X6

2X3

2X5

3X4

2X1

2X4

Bin 1 Bin 2

Arrived order: 3x2, 3x6, 3x4, 2x4, 2x5, 2x1, 2x3

The size of bins: 5x7

Fig. 26. Example of algorithm EBF in 2D packing.

Figure 26 shows the packing solution of framework-based algorithm EBF. Note

that EBF uses the same way to packing the first 5 items of sizes 3×2, 3×6, 3×4, 2×4,

and 2 × 5. However, when the next item of size 2 × 1 comes, it makes the item 2-

adjacent to the 2-pile of size 2× 5 in bin 2 because the associate virtual bin fits the

54

arriving item better. Regarding the last item of size 2× 3, EBF uses the virtual bin

associated with 2-pile of size 2× 4 in bin 1.

3X2

3X6

2X3

2X5
3X4

2X1

2X4

Bin 1 Bin 2 Bin 3

Arrived order: 3x2, 3x6, 3x4, 2x4, 2x5, 2x1, 2x3

The size of bins: 5x7

Fig. 27. Example of algorithm ESS in 2D packing.

Figure 27 shows how ESS packs the 2D instance, where ESS uses bins 1 and

2 to pack the first two items of sizes 3 × 2 and 3 × 6 respectively. When the third

item of size 3× 4 comes, ESS has two options. It either packs the item 2-adjacent to

the 2-pile in bin 1, or creates a new 1-pile in bin 3. Note that ESS’s utility function

∑6
l=1 N2(l) for the first option is: 22 = 4, and for the second option is 1 + 1 + 1 = 3.

To minimize the utility function, ESS opens bin 3 for the item of size 3 × 4. After

that, ESS packs the next two items 2× 4, and 2× 5 into bins 1 and 2. When item of

size 2× 1 comes, ESS again has three options to pack the item

1) 2-adjacent to the item 2× 4 in bin 1

2) 2-adjacent to the item 2× 5 in bin 2

55

3) opens a new 1-pile in bin 3 and makes it 1-adjacent to the item of size 3× 4 in

bin 3

Note that the ESS’s utility function for the first option is 22 = 4, for the second

option is 1 + 1 = 2, for the third option is 1 + 1 + 1 = 3. ESS prefers to the minimal

values, and uses bin 2 to pack the item of size 2× 1. Regarding the last item of size

2× 3, ESS makes it 2-adjacent to 2-pile of size 2× 4 in bin 1.

3X2

3X6

2X3

2X5
3X4

2X1

2X4

Bin 1 Bin 2

Arrived order: 3x2, 3x6, 3x4, 2x4, 2x5, 2x1, 2x3

The size of bins: 5x7

Fig. 28. Example of algorithm EFFD and EBFD in 2D packing.

Figure 28 shows how EBFD and EFFD pack the packing instance. Recall that

EBFD and EFFD first packs the input items lexicographically in non-increasing order.

After sorting, the arriving order of the items will be changed to:

3× 6, 3× 4, 3× 2, 2× 5, 2× 4, 2× 3, and 2× 1. (3.3)

After sorting the input items, EFFD and EBFD use algorithm EFF and EBF to

pack the sorted item respectively. In this example, EFFD and EBFD have the same

56

packing solution as shown in Figure 28.

57

CHAPTER IV

WORST-CASE ANALYSES

A. REA vs. RA

In this section, we will investigate the relationship of the performance ratios between

framework-based algorithms EA and their 1D counterparts A. For some special

packing lists, we find that the ratios REA and RA are closely related for both offline

algorithms and online algorithms. Before giving our results on the relationships, we

next present some definitions and notations.

In 1D bin packing, let L = {L[1], L[2], · · · , L[n]} be an ordered packing list, where

L[i] is the size of the ith arriving item, and n = |L| is the number of items in list L.

We define three operations on the list: addition, repeater, and scalar multiplier. The

addition operator “+” appends the second list to the end of the first list. Repeater

operation Rep(N, L), N ∈ N , produces a new list
∑N

i=1 L, which essentially adds N

copies of list L together. Denote by NL a scalar multiplier on list L, and it refers to

repeating each item in L by N times. The definition of the above three operators are

represented by the following equations, where L1 and L2 are two ordered lists.

L1 + L2 = {L1[1], L1[2], · · · , L1[|L1|], L2[1], L2[2], · · · , L2[|L2|]}. (4.1)

Rep(N, L1) =
N∑

i=1

L1. (4.2)

NL1 =
|L1|∑

i=1

Rep(N, {L1[i]}). (4.3)

For example, if L1 = {1, 2, 3} and L2 = {4, 5, 6}, then,

L1 + L2 = {1, 2, 3, 4, 5, 6}, (4.4)

Rep(2, L1) = {1, 2, 3, 1, 2, 3}, (4.5)

58

2L1 = {1, 1, 2, 2, 3, 3}. (4.6)

1. Offline Algorithms

Denote by A either EFFD or EBFD. A list L of 1D items is called (A,B)-admissible

if 1) L is perfect-packable on bins of size B, and 2) A’s performance ratio on packing

L and NL, ∀N ∈ N , are the same

RA(L,B) = RA(NL,B). (4.7)

Since admissible list L is perfect-packable, (4.7) indicates that algorithm A will use

N · A(L,B) bins to pack list NL.

For example, packing list L

Rep(6, 3), Rep(12, 2), (4.8)

which includes 6 items of size 3, and 12 items of size 2, is a (FFD, 7)-admissible be-

cause 1) L could be perfectly packed into 6 bins, and 2) RFFD(NL, 7) = RFFD(L, 7) =

7/6 for any natural number N .

For the admissible packing lists, our next theorem shows that the performance

ratio of EFFD and EBFD could be represented in terms of RFFD and RBFD in 2-

dimensional packing.

Theorem 4 Denote by A either FFD or BFD, and by EA the extension of A. Let

L1 be (A,B1)-admissible, L2 be (A,B2)-admissible, and L = |L1| × |L2| be a list of

rectangle-items

L =
|L1|∑

i=1

|L2|∑

j=1

{~si,j}, (4.9)

where si,j = (L1[i], L2[j]) is the size of width L1[i] and of height L2[j]. Then, the

59

performance ratio of EA on packing the list L into bins of size ~B = (B1, B2) is:

REA(L, ~B) = RA(L1, B1)RA(L2, B2). (4.10)

Note that Theorem 4 relates the performance ratio of 1D packing with that of

2D packing, and provides us an easy way to compute the performance ratio of EFFD

and EBFD for admissible packing lists. For example, we know that list L

Rep(6, 3), Rep(12, 2) (4.11)

is (FFD, 7)-admissible, and has performance ratio RFFD(L, 7) = 7/6. The theorem

says that for 2D packing list L′

Rep (36, (3, 3)) , Rep (72, (3, 2)) , Rep (72, (2, 3)) , Rep (144, (2, 2)) , (4.12)

the performance ratio of EFFD is

REFFD(L′, (7, 7)) = RFFD(L, 7)2 =
49

36
. (4.13)

Next, we will prove theorem 4.

Proof. On packing L with algorithm EA, we have two kinds of waste, type-X and

type-Y , as shown in Figure 29. Type-X waste is the unused rectangle-area of height

B2 and of width from the last strip in each bin to the right-most side of the bin.

Type-Y waste happens in each strip of height less than B2. In such a strip of width i,

type-Y waste is the unused rectangle-area of width i and of height from the last item

in the strip to the top of the bin. Denote by wx the summation of all type-X waste,

by wyi
the summation of all type-Y waste in strips of width i, by wy =

∑B1
i=1 wyi

the

summation of all type-Y waste.

Let S1 =
∑|L1|

i=1 L1[i], and S2 =
∑|L2|

i=1 L2[i] be the total length of items in lists

L1 and L2 respectively. Suppose that the number of size-i, i = 1, 2, · · · , B1, items in

60

Waste wy

Waste wx

B1

B2

Fig. 29. The waste type wx and wy in EFFD(EBFD).

L1 is ni. Then,
∑B1

i=1 i · ni = S1. Note that while EA packs L, rectangle-items are

ordered first on widths, then on heights; and that EA works like A in packing items

into strips. For each width i, EA would create A(niL2) = ni ·A(L2) strips of width i.

Let r1 = RA(L1, B1), r2 = RA(L2, B2), Denote by w1(w2) the waste of packing

L1(L2) into size-B1(-B2) bins with algorithm A. Since L1 is admissible, therefore,

perfect-packable, we have OPT (L1) = S1/B1. Note that

r1 = RA(L1, B1) =
A(L1)

OPT (L1)
=

(w1 + S1)/B1

S1/B1

=
w1 + S1

S1

. (4.14)

Therefore, w1 = (r1− 1)S1, and similarly, we have w2 = (r2− 1)S2. We can compute

61

the total of type-Y waste as:

wy =
B1∑

i=1

wyi
=

B1∑

i=1

iniw2. (4.15)

Now, let’s compute wx. Note that we have niA(L2) strips for each width i, where

i = 1, 2, · · · , B1. Packing those strips into bins of size ~B will use the same number of

bins as packing list A(L2)L1 into bins of size B1. Then, we get type-X waste as:

wx = B2A(L2)w1 = (w2 + S2)w1 = w1w2 + w1S2. (4.16)

Using the above equation, w1 = (r1 − 1)S1 and w2 = (r2 − 1)S2, we get the total

waste of EA on packing L w.r.t ~B as:

wy + wx = S1(r2 − 1)S2 + (r1 − 1)S1S2 + (r1 − 1)S1(r2 − 1)S2 (4.17)

= (r1r2 − 1)S1S2, (4.18)

which indicates that the performance ratio of EA is r1r2, and completes the proof.

Note that theorem 4 targets 2D packing. Actually, we can generalize the result

for multiple dimensions as the following theorem.

Theorem 5 Let A be either FFD or BFD, and EA be the extension of A. If Ld is

an (A,Bd)-admissible list, d = 1, · · · , D, and

L =
|L1|∑

i1=1

|L2|∑

i2=1

· · ·
|LD|∑

iD

{(L1[i1], L2[i2], · · · , LD[iD])} (4.19)

then the performance ratio of EA on packing the list L into size- ~B bins is:

REA(L, ~B) =
∏D

d=1 RA(Ld, Bd), (4.20)

where ~B = (B1, B2, · · · , BD).

62

Proof. Prove by induction.

1) It obviously holds for D = 1

2) We next shows that if the theorem holds for natural number D, it is also true

for number D + 1. Precisely, we need to show that for packing list L′

L′ =
|L1|∑

i1=1

|L2|∑

i2=1

· · ·
|LD|∑

iD

|LD+1|∑

iD+1

{(L1[i1], L2[i2], · · · , LD[iD], LD+1[iD+1])}, (4.21)

the performance ratio of EFFD or EBFD is REA(L′, ~B′) =
∏D+1

d=1 RA(Ld, Bd),

where ~B′ = (B1, · · · , BD+1).

Denote by

L′′ =
|L2|∑

i2=1

· · ·
|LD+1|∑

iD+1

{(L2[i2], · · · , LD+1[iD+1])}, (4.22)

a packing list of D dimensions, and by ~B′′ = (B2, · · · , BD+1) the corresponding

bins’ size. With the notation, We can represent L′ as L′ =
∑|L1|

i1=1 L1[i1]× L′′.

Regarding L′, SOPT will produce SOPT (L′′, ~B′′) 1-pile of each 1-length L1[i],

where i = 1, · · · , |L1|, and will use SOPT (L′′, ~B′′)SOPT (L1, B1) bins. In the

meantime, EA produces EA(L′′, ~B′′) 1-pile of each 1-length L1[i], and uses

EA(L′′, ~B′′)A(L1, B1) bins. Therefore,

EA(L′, ~B′)

SOPT (L′, ~B′)
=

A(L1, B)EA(L′′, ~B′′)

OPT (L1, B)SOPT (L′′, ~B′′)
. (4.23)

Note that SOPT on packing list L′′ and bins size ~B′′ is a perfect packing.

Therefore, SOPT (L′′, ~B′′) = OPT (L′′, ~B′′). Also note that

EA(L′′, ~B′′)

OPT (L′′, ~B′′)
=

D+1∏

d=2

RA(Ld, Bd). (4.24)

63

Using (4.23) gives

REA(L′, ~B′) =
EA(L′, ~B′)

OPT (L′, ~B′)
=

D+1∏

d=1

RA(Ld, Bd). (4.25)

2. Online Algorithms

Similarly, we can get the relations of performance ratios for EFF, EBF, FF and BF.

Since these algorithms are online, we use a different definition. Let A be an online

algorithm of packing a list L into identical bins of size B. In the packing problem,

the items’ order in L plays an important role because each item in L has to be packed

immediately once arrived. L is called an A-normalized order if A packs each item

in L into either the last open-bin or newly-opened bin. List L of 1D items is called

(A,B)-admissible if 1) L is perfect-packable on bins of size B, 2) after A packs L,

the waste gap of each bin is less than the minimum size in L, and 3) L is in A-

normalized order. For example, packing list L = {3, 3, 5, 5} is (FF, 8)-admissible

because it meets the above three conditions.

It is easy to check that list Rep(N, L),∀N ∈ N , is also (A, B)-admissible, and

RA(L,B) = RA (Rep(N, L), B). Note that the minimum size in L is larger than any

existing waste gap, and that applying algorithm A on Rep(N, L) will repeat the same

packing configuration for N times.

In an (A,B)-admissible list L, denote by Gi(A,L), i = 1, · · · , A(L), the ordered

list of items that are packed by A in the ith bin. If L = {3, 3, 5, 5} and bins’ size is 8,

FF will pack 2 items of size 3 into the first bin, and the rest two items of size 5 into

the second and the third bins respectively. Therefore,

G1(FF, L) = {3, 3}, G2(FF,L) = {5}, G3(FF,L) = {5}. (4.26)

64

Having the above notation, we will show the performance ratio relationship be-

tween the EFF(EBF) and FF(BF) as the following theorem.

Theorem 6 Let A be either Best Fit (BF) or First Fit (FF), and EA be the extension

of A under our framework. Denote by Ld, an (A,Bd)-admissible list of 1D items,

where d = 1, · · · , D. We construct a list L of D-dimensional items as

L =
A(L1)∑

i1=1

· · ·
A(LD)∑

iD=1

|Gi1
|∑

j1=1

· · ·
|GiD

|∑

jD=1

{ (Gi1 [j1], Gi2 [j2], · · · , GiD [jD]) } , (4.27)

where Gid, short for Gid(A,Ld), is the list of items in the idth bin while A packs list

Ld into size-Bd bins, and |Gid | is the number of items in Gid, and Gid [jd] is the jdth

element in Gid. The performance ratio of EA on list L and size ~B = (B1, B2, · · · , BD)

is:

REA(L, ~B) =
D∏

d=1

RA(Ld, Bd). (4.28)

Proof. Prove by induction.

1. When D = 1, (4.28) obviously holds.

2. Suppose that (4.28) holds for D dimensions, we next show that it also holds for

D + 1 dimensions. Let LD+1 be (A,BD+1)-admissible, B′ = (B1, B2, · · · , BD+1), and

let

L′ =
A(L1)∑

i1=1

· · ·
A(LD+1)∑

iD+1=1

|Gi1
|∑

j1=1

· · ·
|GiD+1

|∑

jD+1=1

{ (
Gi1 [j1], Gi2 [j2], · · · , GiD+1

[jD+1]
) }

.

We need to show that

REA(L′, ~B′) =
D+1∏

d=1

RA(Ld, Bd). (4.29)

Note that Ld, d = 1, · · · , D+1, is (A,Bd)-admissible, therefore, perfect-packable.

65

In optimal packing, we may reorder L′ to list

L′′ =
|L1|∑

i1=1

· · ·
|LD+1|∑

iD+1=1

{(L1[i1], · · · , LD+1[iD+1])}, (4.30)

where (L[i1], · · · , LD+1[iD+1]) is (D + 1)-dimensional items. Obviously, L′′ is perfect-

packable, then, L′ and L are also perfect-packable. Denote by sd =
∑|Ld|

i=1 Ld[i] the

sum length in list Ld. We have

OPT (L, ~B) =
D∏

d=1

sd

Bd

, (4.31)

OPT (L′, ~B′) =
D+1∏

d=1

sd

Bd

= OPT (L, ~B)
sD+1

BD+1

. (4.32)

Based on our assumption, we get the number of bins used by EA of packing L as:

EA(L, ~B) = OPT (L, ~B)
D∏

d=1

RA(Ld, Bd). (4.33)

We next evaluate EA(L′, ~B′). Expand L′ into a sequence of groups:

(Gi1 [j1], Gi2 [j2], · · · , GiD [jD], GiD+1
[1])

(Gi1 [j1], Gi2 [j2], · · · , GiD [jD], GiD+1
[2])

...

(Gi1 [j1], Gi2 [j2], · · · , GiD [jD], GiD+1
[|GiD+1

|]).

Note that each of the above groups will be packed by EA into a (D + 1)-pile of size

(Gi1 [j1], Gi2 [j2], · · · , GiD [jD]) in the the first D dimensions. The length of the pile in

dimension D+1 is less than or equal to BD+1. and any following items after the group

can NOT be put (D+1)-adjacently to the strip because LD+1 is (A,BD+1)-admissible,

and the waste length on the strip is less than minimum size in LD+1. Based on the

observation, packing L′ by EA is equivalent to packing A(LD+1) lists of L by EA.

66

Therefore,

EA(L′, ~B′) = A(LD+1)EA(L, ~B) =
sD+1

BD+1

RA(LD+1, BD+1)EA(L, ~B). (4.34)

Using (4.32) and (4.34), we get the performance ratio of EA on packing L′ in ~B′ as:

REA(L′, ~B′) =
EA(L′, ~B′)

OPT (L′, ~B′)
=

D+1∏

i=1

RA(Ld, Bd), (4.35)

which meets the requirement of (4.29) and completes the proof.

Theorem 6 gives the performance-ratio relationship between EFF, EBF and their

1D counterparts, and offers a easy way to compute the performance ratio of EFF or

EBF for some special packing lists. For example, we know that FF uses 3 bins to pack

list L1 = {3, 3, 5, 5} into bins of size 8, and uses 3 bins to pack list L2 = {4, 4, 5, 5}
into bins of size 9 as well. Note that optimal algorithms use 2 bins for both lists

L1 and L2, and RFF (L1, 8) = RFF (L2, 9) = 1.5. Using theorem 6, we can quickly

compute the performance ratio of EFF for packing list L′:

Rep (4, (3, 4)) , Rep (2, (3, 5)) , Rep (2, (5, 4)) , Rep (4, (5, 5)) (4.36)

and bins of size ~B = (8, 9) as:

REFF (L′, ~B) = 1.5× 1.5 = 2.25. (4.37)

B. EA vs. SOPT

Recall that SOPT are algorithms that follow strip packing rule and use minimal

number of bins. Since framework-based algorithms EA also follow strip packing rule,

it is natural to compare algorithms EA and SOPT. The comparison offers the following

benefits:

67

• it helps us to better understand the framework-based algorithms and strip pack-

ing rule

• it allows us to use SOPT as a baseline, and differentiate the performance of

framework-based algorithms EA

• by using the relationship between SOPT and OPT studied in the next sections,

it bridges the gap between algorithms EA and OPT

Denote by EA(L, ~B) and SOPT (L, ~B) the number of bins used by algorithms

EA and SOPT respectively with respect to packing list L and bins of size ~B. In this

section, we will use metric

R∞(EA, SOPT) = sup
~B∈RD

lim sup
SOPT (L, ~B)→∞

EA(L, ~B)

SOPT (L, ~B)
(4.38)

to estimate the performance of framework algorithms ENF, EFF, EBF, EFFD, EBFD,

and ESS. As in 1D packing, we will estimate the lower bounds and upper bounds of

R∞(EA, SOPT).

1. Lower Bounds

To get the lower bounds, we essentially need to find some packing instance that has

high value for metric R∞(EA, SOPT). We next try to find the packing examples for

algorithms ENF, EFF, EBF, EFFD, EBFD, and ESS.

a. ENF

Recall that in 1D packing, packing instance (B/2, 1, B/2, 1, · · · ,) gives the worst

packing instance for Next Fit, where B is the bins’ size. To work on the ENF for

68

ratio R∞(EA, SOPT), we consider the following packing example for 2D packing

L =
{(

B1

2
,
B2

2

)
,
(

B1

2
, 1

)
,
(
1,

B2

2

)
, (1, 1)

}
, (4.39)

where B1 and B2 are the bins’ width and height. Note that ENF packs the first two

items into a 2-pile. The last two items will close the first 2-pile, and pack into a new

2-pile in the same bin. If we repeat the above packing set for 4NB1B2 times, ENF

will pack them into 4NB1B2 bins.

SOPT should pack the 4NB1B2 sets of items in the way, where uses NB1B2 +

2NB1 + 2NB2 + 4N bins. Therefore,

R∞(ENF, SOPT) ≥ sup
B1∈R,B2∈R

lim
N→∞

4NB1B2

NB1B2 + 2NB1 + 2NB2 + 4N
= 4. (4.40)

Using the similar packing pattern, we may extend the packing example to D-

dimensional hyperbox packing as follows. Denote by

L = S1 × S2, · · · ,×SD (4.41)

the cross product of set Si, where

Si =
{

Bi

2
, 1

}
, (4.42)

is a set of two elements, and Bi is bins’ edge length in the ith dimension. In three

dimensions, L is in the form of:

{(
B1

2
,
B2

2
,
B3

2

)
,
(

B1

2
,
B2

2
, 1

)
, · · · , (1, 1, 1)

}
. (4.43)

Let the packing items be N2D ∏D
i=1 Bi copies of set L. ENF needs a new bin to

pack each copy of the set, and close all piles in the bin when the next copy comes.

69

Therefore, ENF uses

ENF (L) = N2D
D∏

i=1

Bi, (4.44)

bins for the items. Also note that input items could be perfectly packed by SOPT,

and that the summation of items area is:

N2D
D∏

i=1

Bi

D∏

i=1

(
Bi

2
+ 1

)
. (4.45)

Therefore, the number of bins used by SOPT is:

SOPT (L) = N
D∏

i=1

(Bi + 2) . (4.46)

Combining (4.44) and (4.46), we get:

R∞(ENF, SOPT) = sup
Bi∈R

lim sup
N→∞

ENF (L)

SOPT (L)
≥ 2D. (4.47)

b. EFF and EBF

Let t1 = 1, ti+1 = ti(ti + 1) for i ∈ N , and B ≥ tk ∗ (k − 1) + k where k ≥ 1. Recall

that for packing list L

Rep (tkn,B − (k − 1)) ,
1∑

i=k−1

Rep
(
tkn,

tkB

ti + 1
+ 1

)
(4.48)

and bins of size tkB, FF and BF have performance ratios

RFF (L, tkB) = RBF (L, tkB) =
k∑

i=1

1

ti
. (4.49)

Notice that L is both (FF, tkB)-admissible and (BF, tkB)-admissible. We can con-

struct a packing list L′ as:

A(L)∑

i1=1

· · ·
A(L)∑

iD=1

|Gi1
|∑

j1=1

· · ·
|GiD

|∑

jD=1

{ (Gi1 [j1], Gi2 [j2], · · · , GiD [jD]) } , (4.50)

70

where Gi is the list of items packed by FF by BF into ith bin of size tkB. Using

theorem 6, we conclude that the performance ratio of EFF and EBF on packing list

L′ on bins of size ~B = (tkB, · · · , tkB) is:

REFF (L′, ~B) = REBF (L′, ~B) =

(
k∑

i=1

1

ti

)D

. (4.51)

Since L′ is perfect-packable by SOPT on bins of size ~B, SOPT and OPT should use

the same number of bins regarding L′. Therefore,

R∞(EFF, SOPT) ≥ sup
k∈N

lim
n→∞

EFF (L′, ~B)

SOPT (L′, ~B)
=

(∞∑

i=1

1

ti

)D

. (4.52)

Using the similar technique, we may show that the lower bound for EBF as:

R∞(EBF, SOPT) ≥
(∞∑

i=1

1

ti

)D

. (4.53)

c. ESS

As shown in Figure 14, SS has performance ratio R∞
SS = 2B/(B + 1) if bins’ size is

2B + 1, and all to-be-packed items are of size 2. Next, we will show a lower bound of

ESS on 2D packing.

In the example, bins are squares and of size (2B + 1, 2B + 1) and B is an odd

number. Items are squares as well, and of size (2, 2). Note that ESS will use NB bins

to pack NB(B + 1)2/4 such items, and there are N(B + 1)/2 2-piles with 2-length

l = 2, 4, · · · , 2B. Figure 30 shows such an example for B = 3 and N = 1. Note that

each bin could at most hold B2 items. Therefore, for list L consisting of NB(B+1)2/4

items of size (2, 2), optimal algorithms use

SOPT (L) = OPT (L) =

⌈
NB(B + 1)2/4

B2

⌉
(4.54)

71

bins, and ESS uses NB bins. Therefore,

R∞(ESS, SOPT)(B) ≥ lim
N→∞

NB/

⌈
NB(B + 1)2/4

B2

⌉
(4.55)

≥ lim
N→∞

NB/

(
N(B + 1)2/4

B
+ 1

)
=

4B2

(B + 1)2
. (4.56)

and

R∞(ESS, SOPT) = sup
B∈R

R∞
ESS(B) ≥ 4. (4.57)

Extended Sum of Square Packing

B=3, N=1

2

2

2

2

2

2

2

2

2

2

2 2

NB(B+1)^2/4 (12) items of size (2, 2)

Fig. 30. 12 items of size (2, 2) packed into 3 bins of size (7, 7).

The 2D packing example could be extended to D-dimensional packing, where

bins are hypercube with edge-length 2B + 1, and to-be-packed items are hypercube

as well, and their edge-lengths are 2. Using similar analyses, we could obtain the

lower bound of performance ratio for ESS as:

R∞(ESS, SOPT) = sup
B∈R

R∞
ESS(B) ≥ 2D. (4.58)

72

d. EFFD and EBFD

As shown in Figure 13 in chapter II, a list L of 6N items of sizes B/2 + 1, B/4 +

2, B/4 + 1, and 12N items of size B/4 − 2 could be perfectly packed into 9N bins

of size B, while EFF and EBF need 11N bins to pack the list. Also note that list

L is (FFD, B)-admissible and (BFD, B)-admissible. We can construct a new D-

dimensional packing list L′ as:

L′ =
|L|∑

i1=1

|L|∑

i2=1

· · ·
|L|∑

iD

{(L[i1], L[i2], · · · , L[iD])}. (4.59)

And theorem 5 indicates that the performance ratios of EFFD and EBFD against the

list are:

REFFD(L′, ~B) = REBFD(L′, ~B) =
(

11

9

)D

, (4.60)

where ~B = (B, · · · , B). Also note that for packing list L′ and bins of size ~B, SOPT

has perfect packing, and uses the same number of bins as OPT. Therefore,

R∞(EFFD, SOPT) ≥ lim
N→∞

EFFD(L′, ~B)

SOPT (L′, ~B)
=

(
11

9

)D

. (4.61)

2. Upper Bounds

Next, we investigate the upper bounds of performance ratio of extended framework

algorithms comparing to strip optimal packing algorithms. The summary results of

the upper bounds are shown in the following theorem.

Theorem 7 On the problem of packing a list of D-hyperbox-items into D-hyperbox-

bins that have edge length Bd in dimension d, we have:

EFFD(L) ≤
(

11

9

)D

SOPT (L) + c, (4.62)

EBFD(L) ≤
(

11

9

)D

SOPT (L) + c, (4.63)

73

EFF (L) ≤ 1.7DSOPT (L) + c, (4.64)

EBF (L) ≤ 1.7DSOPT (L) + c, (4.65)

ESS(L) ≤ (25/9)DSOPT (L) + c, (4.66)

ENF (L) ≤ 2DSOPT (L) + c, (4.67)

where EA(L) and SOPT (L) are the number of bins used by algorithms EA and SOPT

respectively on list L, and c is a constant independent of L.

Recall that the upper bound of performance ratio is 11/9 for FFD and BFD, 1.7

for FF and BF, and 25/9 for SS. The above theorem shows that the upper bounds

of framework algorithms are closely related to their 1D counterparts. Before proving

the above theorem, we will need the following lemma.

On the problem of packing items into bins of size B, denote by L[i] the number

of items of size i, by L = {L[i]|i = 1, · · · , B} the ordered list of all to-be-packed items,

where the ith element represents the number of items of size i. Recall that a list of

items is perfect-packable if they can be packed into bins without any waste space.

For 1D perfect-packable list, we have the following lemma.

Lemma 8 If L is a list of 1D items, and is perfectly-packable by optimal algorithm

OPT , then

OPT (dαLe) ≤ αOPT (L) + KB, (4.68)

where OPT (L) the number of bins used by optimal algorithms to pack the list L,

dαLe = {dαL[i]e|i = 1, · · · , B}, α ∈ R, is another list, and KB is the number of

perfect-packing configurations w.r.t the bins of size B.

74

As shown in [64], KB could be estimated via the following formula:

KB ∼ 1

4B
√

3
eπ
√

2B/3. (4.69)

Next, we will prove lemma 8 as follows.

Proof. Let C = {Cij}, i = 1, · · · , B, j = 1, · · · , KB be the perfect packing matrix,

where each element Cij represents the number of size-i items in configuration Cj.

Denote by Nj, j = 1, · · · , KB, the number of configurations Cj to perfectly pack list

L. Then we have:

KB∑

j=1

CijNj = L[i]. (4.70)

Consider a perfect packing with dαNje configurations of Cj, the number of size-i

items is:

KB∑

j=1

CijdαNje ≥ dαL[i]e. (4.71)

Also note that the number of bins used in the packing is:

KB∑

j=1

dαNje ≤
KB∑

j=1

αNj + KB = αOPT (L) + KB. (4.72)

Therefore, the list of items dαLe could be packed using at most αOPT (L)+KB bins.

Next, we will prove the first inequality in theorem 7, which is EFFD(L) ≤
(11/9)DSOPT (L) + c.

Proof. Note that in strip-based packing a couple of dth-adjacent, d = 1, · · · , D,

items could be successively touched together and form a dth-pile, and several dth-

piles could be further form a (d− 1)th-pile, and so on. For all dth-piles in this proof,

we will only focus on their sizes in the first d− 1 dimensions.

75

Let Ld be an ordered list of (d + 1)th piles in which only the edge lengths in the

first d dimensions are considered. Precisely,

Ld = {L[l1, · · · , ld] | i ∈ [1, d], li ∈ [1, Bi]}, (4.73)

where the (l1, · · · , ld)th elements L[l1, · · · , ld] represents the number of (d + 1)th-piles

that have edge length li, for i = 1, · · · , d. Let Id be a unit list of (d+1)th-piles, where

there exists exactly one item for each size (l1, · · · , ld). For any positive constant α,

we define

dαLde = {dαL[l1, · · · , ld]e | i ∈ [1, d], li ∈ [1, Bi]}, (4.74)

Denote by L1d + L2d the addition of L1d and L2d. Particularly,

L1d + L2d = {L1[s1, · · · , sd] + L2[s1, · · · , sd] | i ∈ [1, d], si ∈ [1, Bi]}. (4.75)

Let Ad be a strip-based packing algorithm that packs items in dimension d, and

denote by Ad < Ld > the list of dth-piles generated by Ad. Let LD = L′′D = L, where

L is the input list of D-hyperbox-items as we defined previously. Also define:

Ld−1 = EFFDd < Ld >, (4.76)

L′d−1 = SOPTd < Ld >, (4.77)

L′′d−1 = SOPTd < L′′d >, (4.78)

We next show that:

Ld ≤
⌈(

11

9

)D−d

L′′d + F (d)Id

⌉
, (4.79)

76

where d = 0, · · · , D, and

F (d− 1) =
11

9

(
KBd

+
⌈
Bd − 1

2

⌉
+ 1

)
(F (d) + 1) + 1, (4.80)

with initial value F (D) = 0, where KBd
is the number of perfect-packing configu-

rations with bin-size Bd. Note that (4.79) will give the result of the theorem when

d = 0. Prove (4.79) by induction.

1. When d = D, we have LD = L′′D = L and (4.79) obviously hold with F (D) = 0.

2. Suppose (4.79) hold for d, and we need to show that it also hold for d − 1.

Note that

L′d−1 = SOPTd < Ld > (4.81)

≤ SOPTd

〈⌈(
11

9

)D−d

L′′d + F (d)Id

⌉〉
(4.82)

≤ SOPTd

〈⌈(
11

9

)D−d

L′′d
⌉〉

+ SOPTd 〈dF (d)Ide〉 . (4.83)

If Bd is odd, items in Id could be packed in the dth dimensions with sizes (1, Bd −
1), (2, Bd−2), · · · ((Bd−1)/2, (Bd−1)/2), Bd, and (Bd−1)/2+1 dth-piles are generated.

Similarly, we will get d(Bd − 1)/2e + 1 dth-piles when Bd is even. Hence, SOPTd at

most creates d(Bd − 1)/2e+ 1 dth-pile. Using lemma 8 on (4.83), we get:

L′d−1 ≤
(

11

9

)D−d

L′′d−1 + KBd
Id−1 + (F (d) + 1)(

⌈
Bd − 1

2

⌉
+ 1)Id−1. (4.84)

Using (4.84) and the result on [79], we have:

Ld−1 = EFFDd < Ld > (4.85)

≤
⌈
11

9
L′d−1 + Id−1

⌉
(4.86)

≤
⌈(

11

9

)D−d+1

L′′d−1 + F (d− 1)Id−1

⌉
. (4.87)

77

which yields

EFFD(L) ≤
(

11

9

)D

SOPT (L) + c, (4.88)

with c = F (0) + 1.

Using the similar proving technique, and that the upper bound for BFD is 11/9,

for FF and BF is 1.7, and for SS is 25/9, we can easily prove the remaining inequalities

in theorem 7.

C. EA vs. OPT

In this section, we will estimate the performance of framework-based algorithms by

using optimal algorithm OPT as a base line. Precisely, we will estimate the following

performance ratio,

R∞
EA = sup

B∈R
lim sup

OPT (L)→∞

EA(L, ~B)

OPT (L, ~B)
, (4.89)

where EA is framework-based algorithms.

Note that in discrete packing, the edge length of hyperbox bins could be either

bounded or unbounded. We next study how these two cases affect the performance

ratio R∞
EA of framework based algorithms.

1. Unbounded Edge Length

We find that when the edge lengths of hyperbox bins are unbounded, the performance

ratios of framework based algorithms may go to infinity as well. Next theorem shows

why it happens.

Theorem 9 In a D-hyperbox packing with edge length Bd, d = 1, · · · , D, in dimen-

sion d, algorithms EFF, EBF, EFFD, and EBFD have unbounded asymptotic worst-

78

case ratio if edge lengths Bd are unbounded.

Proof. Let’s first consider a 2D bin-packing with edge length B1 and B2 in

dimensions 1 and 2. Assume that B1 ≥ B2, let L be a list of items of height 1 and of

widths 1, B1 − 1, 2, B1 − 2, · · · , B2, B1 −B2.

Under the above packing instance, we have OPT (L) = 1 and EFF (L) = B2.

Therefore,

REFF (L) =
EFF (L)

OPT (L)
= B2. (4.90)

If B2 is unbounded, then R∞
EFF = B2 →∞.

Note that 2D bin packing is a special case of D-hyperbox packing. Therefore, the

asymptotic worst-case ratio of D-hyperbox packing is larger that of 2D bin packing,

and is also infinite when bin’s edge-lengths are unbounded.

Usinsg similar proving technique, we may show that EBF,EBFD and EFFD

have unbounded asymptotic worst-case ratios as well.

The above theorem shows that the worst-case ratios of framework based algo-

rithms are related to hyperbox bins edge lengths, and that when the edge lengths go

to infinity, the ratios will be unbounded as well. To better understand how the bins

sizes affect the ratios, we study the performance ratio relationships for different bins

sizes, and find the following result.

Theorem 10 In a discrete D-hyperbox packing with bins of size ~B = (B1, · · · , BD),

the worst-case ratio of framework-based algorithms EA on the size-(2 ~B + ~1) bins,

which has edge-length 2Bd + 1 in each dimension d, is:

REA(2 ~B +~1) ≥ REA(~B) +
1

2BD + 1
. (4.91)

79

Proof. Denote by L a list that makes algorithm EA to get worst-case ratio while

packing items into bins of size ~B. Let L′ =
∑|L|

i=1{2L[i]} be a copied list of L that

doubles the size of each item in L. Obviously, packing L into ~B and packing L′ into

(2 ~B +~1) will use EA the same number of bins.

Without loss of generality, we assume that the optimal packing OPT on L and

~B has no waste. Applying the OPT on items instance L′ and bins of size (2 ~B + 1)

will leave each bin identical waste that is of length 1 in each dimension. Note that the

waste in each bin can hold one more item of size L̂′ = (2B1 +1, 2B2 +1, · · · , 2BD−1 +

1, 1). In the problem of packing L′ + L̂′, optimal algorithm will still use OPT (L)

bins. However, EA will need to open OPT (L)/(2BD + 1) more bins for item list L̂′

because EA is a strip-based algorithm, and does NOT put items in L′ and any one

in L̂′ into the same bin. Therefore, the ratio of EA on packing list L′ + L̂′ is:

REA(L′ + L̂′) ≥ EA(L) + OPT (L)
2BD+1

OPT (L)
= REA(L, ~B) +

1

2BD + 1
. (4.92)

Therefore, the worst-case ratio of EA w.r.t size-(2 ~B+~1) bins is at least REA(~B)+

1
2BD+1

.

The above theorem shows that with the bins’ size increase, the worst-case ratios

of algorithms EA will monotonically increase. To avoid unbounded asymptotic worst-

case ratio, we will limit the edge length to be bounded to better estimate R∞
EA for

different framework-based algorithms EA.

For most framework-based algorithms, it is very hard to compute the exact values

of R∞
EA. Instead, we estimate the range of the metric from two directions: lower

bounds and upper bounds, while keeping the edge lengths bounded.

80

2. Lower Bounds

For certain packing instance L and bins of size ~B, optimal algorithms OPT should

not use more bins than strip optimal algorithms SOPT, therefore, OPT (L, ~B) ≤
SOPT (L, ~B). Also recall that

R∞
EA = sup

~B∈RD
lim sup

OPT (L)→∞

EA(L, ~B)

OPT (L, ~B)
, (4.93)

and

R∞
EA(EA, SOPT) = sup

B∈RD
lim sup

SOPT (L)→∞

EA(L, ~B)

SOPT (L, ~B)
. (4.94)

Therefore, the lower bounds of R∞(EA, SOPT) are also the lower bounds of R∞
EA

for each framework-based algorithm EA. Using the results from the previous section

which states the lower bounds of SOPT vs. EA, we have

R∞
ENF ≥ 2D, (4.95)

R∞
EFF ≥

(∞∑

i=1

1

ti

)D

, (4.96)

R∞
EBF ≥

(∞∑

i=1

1

ti

)D

, (4.97)

R∞
ESS ≥ 2D, (4.98)

R∞
EFFD ≥

(
11

9

)D

, (4.99)

R∞
EBFD ≥

(
11

9

)D

. (4.100)

3. Upper Bounds

For framework-based algorithms EFFD, EBFD, EFF, EBF, and ENF, all non-last

d-piles should be at least half full. If the edge lengths of the bins’ are bounded, then

it is easy to conclude that 2D is one upper bound for R∞
EA, where D is the number

81

of bins’ dimensions. Note that the upper bound is loose, and we next study tighter

upper bounds for framework-based algorithms.

a. Upper Bound for R∞
EFFD and R∞

EBFD

Recall that [21] showed the relationship between OPT and SOPT in 2D packing,

and [23] showed the extended results in general D-dimensional hyperbox packing as

follows:

R∞(SOPT, OPT) = sup
~B∈RD

lim
OPT (L, ~B)→∞

SOPT (L, ~B)

OPT (L, ~B)
(4.101)

=

(∞∑

i=1

1

ti

)D−1

< 1.7D−1, (4.102)

where t1 = 1, ti+1 = ti(ti + 1). Also note that,

R∞
EA = sup

~B∈RD
lim sup

OPT (L)→∞

EA(L, ~B)

OPT (L, ~B)
(4.103)

= sup
~B∈RD

lim sup
OPT (L)→∞

EA(L, ~B)

SOPT (L, ~B)

SOPT (L, ~B)

OPT (L, ~B)
(4.104)

≤ R∞(EA, SOPT)R∞(SOPT, OPT). (4.105)

Using (4.102), and that R∞(EFFD, SOPT) ≤ (11/9)D in D-dimensional hyperbox

packing, we get the upper bound of EFFD as:

R∞
EFFD ≤

(∞∑

i=1

1

ti

)D−1

∗
(

11

9

)D

<
2.078D

1.7
. (4.106)

Similarly, the corresponding upper bound for EBFD in D-dimensional hyperbox

packing is:

R∞
EBFD ≤

(∞∑

i=1

1

ti

)D−1

∗
(

11

9

)D

<
2.078D

1.7
. (4.107)

Note that the upper bound of R∞(EFF, SOPT) and R∞(EFF, SOPT) is 1.7D,

82

and if we use the similar reasoning for EFF, and EBF, the upper bound we can get

for D-dimensional packing is:

R∞
EFF ≤

(∞∑

i=1

1

ti

)D−1

∗ 1.7D, (4.108)

R∞
EBF ≤

(∞∑

i=1

1

ti

)D−1

∗ 1.7D, (4.109)

which is even looser then 2D = 4. Therefore, we need to use some alternative approach

to investigate the upper bound of R∞
EFF and R∞

EBF .

b. Upper Bound for R∞
EFF and R∞

EBF

In this sub-section, we are going to study the upper bound of R∞
EFF and R∞

EBF in 2D

packing. Before walking through the proof, we first denote the weighting function

f(x) by:

f(x) =

6
5B

x x ∈ [0, B
6
]

9
5B

x− 1
10

x ∈ [B
6
, B

3
]

6
5B

x + 1
10

x ∈ [B
3
, B

2
]

1 x ∈ (B
2
, B]

, (4.110)

where x takes values in range 1, · · · , B. Based on the definition, we have:

f(x) ≤

6
5B

x x ∈ [0, B
6
]

9
5B

x− 1
10

x ∈ [B
6
, B

2
]

(4.111)

Suppose xd, d = 1, · · · , D, takes discrete value 1, · · · , Bd, and we also denote

multi-dimensional weighting function by w(x1, x2, · · · , xD) =
∏D

d=1 f(xd). With the

above notation, we have the following corollary for 1D discrete bin packing.

Corollary 11 For a list of discrete-size items L = {a1, · · · , an}, where ai ∈ [1, B],

83

and bins of size B, the number of bins used by First Fit (FF) is

FF (L) ≤ W + 2, (4.112)

BF (L) ≤ W + 2, (4.113)

where W =
∑n

i=1 f(ai) is the summation of weighting function f(x) over all items ai.

Proof. Packing a list of items L = (a1, · · · , an) into bins of size B is equivalent to

packing items L′ = (a1/B, · · · , an/B) into unit bins. The result immediately follows

by using the result in claim 2.2.4 in [53].

Now, we will show the relationship between the weighting function and 2D frame-

work algorithm EFF.

Theorem 12 Given a list of 2D items L = {(x1, y1), · · · , (xn, yn)}, we have W ≥
EFF (L) − 2B1 − 2, and W ≥ BFF (L) − 2B1 − 2, where xi = 1, · · · , B1 and yi =

1, · · · , B2, and W =
∑n

i=1 w(xi, yi).

Proof. Recall that EFF for 2D packing just repeatedly applies FF in x dimension

and y dimension respectively. Therefore,

W =
n∑

i=1

w(xi, yi) =
n∑

i=1

w(xi)w(yi) (4.114)

=
B1∑

s=1

w(s)
n∑

i=1,xi=s

w(yi). (4.115)

Note that
∑n

i=1,xi=s w(yi) is the total weight in y dimension over all items with width

s. Using corollary 11, we get

n∑

i=1,xi=s

w(yi) ≥ FF (Ls)− 2, (4.116)

where FF (Ls) is the number of strips of width s generated by EFF. Using (4.115)

84

and (4.116), we have:

W ≥
B1∑

s=1

w(s)(FF (Ls)− 2) (4.117)

=
B1∑

s=1

w(s)FF (Ls)− 2
B1∑

s=1

w(s). (4.118)

Note that
∑B1

s=1 w(s)FF (Ls) is the total weight of all strips in x dimension, and it

should be ≥ EFF (L)− 2. Also note that w(s) ≤ 1 for any s ∈ [1, B1]. Therefore,

W ≥ EFF (L)− 2B1 − 2. (4.119)

Same reasoning gives us: W ≥ EBF (L)− 2B1 − 2.

Next, we relate the above weighting function and 2D optimal packing. Before

we go to the relationship, let’s first look at the following lemma.

Lemma 13 Let a list of 1D items L = {a1, · · · , am} be packed into a bin of size B,

where ai ≤ B/2 for each i = 1, · · · ,m, and V =
∑m

i=1 ai > B/2. Then, resizing the

list of items into two items with size d(B + 1)/2e and V − d(B + 1)/2e will increase

the weight if B > 18. Precisely:

m∑

i=1

f(ai) ≤ f
(⌈

B + 1

2

⌉)
+ f

(
V −

⌈
B + 1

2

⌉)
. (4.120)

Proof. We separate items ai into two set I and II, where I has size (0, B/6], and

II has size (B/6, B/2]. Using (4.111), we have:

m∑

i=1

f(ai) ≤
∑

ai∈I

6ai

5B
+

∑

ai∈II

(
9ai

5B
− 1

10

)
(4.121)

Next, we will estimate

δ = f
(⌈

B + 1

2

⌉)
+ f

(
V −

⌈
B + 1

2

⌉)
−

m∑

i=1

f(ai), (4.122)

and show that it is positive in the following three cases.

85

case 1: V − d(B + 1)/2e ∈ [0, B/6]. Using (4.121) yields:

δ ≥ 1 +
6

5B

(
V −

⌈
B + 1

2

⌉)
− ∑

ai∈I

6ai

5B
− ∑

ai∈II

(
9ai

5B
− 1

10

)
(4.123)

≥ 1− 3

5B

∑

ai∈II

ai − 6

5B

⌈
B + 1

2

⌉
+

1

10

∑

ai∈II

1. (4.124)

Let’s assume that set II is non empty. Since
∑

ai∈II ai ≤ d(B + 1)/2e+ B/6, (4.124)

is greater than or equal to:

≥ 1− 3

5B
(
2B

3
+ 1)− 6

5B
(
B

2
+ 1) +

1

10
(4.125)

≥ 1− 2

5
− 3

5B
− 3

5
− 6

5B
+

1

10
(4.126)

=
1

10
− 9

5B
, (4.127)

which is greater than 0 when B > 18. If set II is empty, (4.124) is obviously greater

than 0 when B > 18.

case 2: V − d(B + 1)/2e ∈ [B/6, B/3]. In this case,

δ ≥ 1 +
9

5B

(
V −

⌈
B + 1

2

⌉)
− 1

10
− ∑

ai∈I

6ai

5B
− ∑

ai∈II

(
9ai

5B
− 1

10

)
(4.128)

≥ 1 +
3

5B

∑

ai∈I

ai − 1

10
− 9

5B

(
B

2
+ 1

)
+

1

10

∑

ai∈II

1 (4.129)

=
3

5B

∑

ai∈I

ai − 9

5B
+

1

10

∑

ai∈II

1. (4.130)

If II is not empty, (4.130) ≥ 0 when B ≥ 18. If II is empty,
∑

ai∈I ai will be larger

than 2B
3

, and (4.130) will also greater than 0 when B ≥ 18.

case 3: V − d(B + 1)/2e ∈ [B/3, B/2). In this case,

δ ≥ 1 +
6

5B

(
V −

⌈
B + 1

2

⌉)
+

1

10
− ∑

ai∈I

6ai

5B
− ∑

ai∈II

(
9ai

5B
− 1

10

)
(4.131)

≥ 1− 3

5B

∑

ai∈II

ai − 6

5B

(
B

2
+ 1

)
+

1

10
+

1

10

∑

ai∈II

1 (4.132)

If II is empty, (4.132) ≥ 0 when B ≥ 18.

86

If II has only one element,
∑

ai∈II ai ≤ B/2. Then, (4.132) ≥ 3/10− 6/5B, and

will be greater than or equal to 0 when B > 18.

If II has two or more elements,
∑

ai∈I ai ≤ B, and (4.132) will be greater than or

equal to:

≥ 1− 3

5
− 3

5
− 6

5B
+

3

10
=

1

10
− 6

5B
, (4.133)

which is greater than 0 when B ≥ 18.

Theorem 14 For a 2D discrete packing with bin size (B1, B2), the total weight of all

items in the bin is:
∑m

i=1 w(xi, yi) ≤ 3.0625, which indicates that the total weight of

optimal packing on a 2D list L is: W ≤ 3.0625OPT (L).

Proof. Based on the definition of weighting function f(x), we have: f(x) ≤ 3/(2B)

if x ∈ [1, B/2]. Next, we will show the proof in the following three case.

case 1: all items in the bin has width xi ≤ B1/2, and height yi ≤ B2/2. In this

case, we have:

W =
m∑

i=1

w(xi, yi) =
m∑

i=1

f(xi)f(yi) (4.134)

≤
m∑

i=1

3xi

2B1

3yi

2B2

(4.135)

≤
(

3

2

)2 1

B1B2

m∑

i=1

xiyi. (4.136)

Note that
∑m

i=1 xiyi ≤ B1B2, therefore, we have:

W ≤
(

3

2

)2

< 3.0625. (4.137)

case 2: there is only one item that has both width xi > B1/2 and height

yi > B2/2.

Without loss of generality, we assume that the item was put on the left-bottom

87

corner of the bin. Using lemma 13, we can add more items and re-arrange other items

as shown in the Figure 31. Note that the re-arrangement will not decrease the total

weight.

B1

B2

Big item
Vertical

Strips

Unit

items

Horizontal

Stips

Fig. 31. Add and re-arrange items.

Using the fact f(x) ≤ 9x/(5B) when x ≤ B/2, we may estimate the total weight

in Figure 31 as:

W ≤ 1 +
3

2
+

(
3

2

)2 1

4
(4.138)

= 3.0625. (4.139)

case 3: there are many items with width xi > B1/2, or height yi > B2/2. We

can always use lemma 13 to combine those items, and reduce the case to case 2.

For 2D EFF packing of item L, Theorem 14 show that the total weight for OPT

is: W ≤ 3.0625OPT (L), and Theorem 12 shows that the total weight for EFF is:

88

W ≥ EFF (L)− 2B1− 2. Therefore, we have: EFF (L)− 2B1− 2 ≤ 3.0625OPT (L),

which yields R∞
EFF ≤ 3.0625. Similarly, we have: R∞

EBF ≤ 3.0625.

89

CHAPTER V

AVERAGE-CASE ANALYSES

In this chapter, we will estimate the optimal expected waste EWOPT
n of hyperbox

packing, invent some non-framework-based algorithms whose expected waste is close

to Θ(EWOPT
n), and analyze the expected waste of framework based algorithms EA.

Before looking into the details, we next describe the packing system and the stochastic

model.

A. Optimal Expected Waste

In this section, we first address a stochastic system of hyperbox packing, then design

a stochastic model for the expected waste in the system, and finally, study the re-

lationship between the optimal expected waste and the size distribution of arriving

hyperbox-items.

Our packing system evolves with discrete time steps. At each time step t, a D-

dimensional hyperbox-item comes into the system and is packed into D-dimensional

hyperbox-bins with length Bd ∈ Z+ in dimension d, d = 1, · · · , D. The edge length

of hyperbox-items in each dimension takes value from set {1, · · · , Jd}, Jd ≤ Bd. Note

that items can not be rotated and that there are J(D) =
∏D

d=1 Jd different sizes.

Denote by oi, i = 1, · · · , J(D), the size of hyperbox-items on which the length in the

dth dimension is b((i − 1) mod J(d))/J(d − 1)c + 1, d = 1, · · · , D. At each time t,

an item arrives at the system and the probability that arriving item has size oi is λi,

where
∑J(D)

1 λi = 1.

In order to analyze the expected waste in the above packing system, we next

design a stochastic model. Note that there exist configurations ck of items such that

the items could be perfectly packed into a bin without any waste. Denote by qik the

90

number of items of size oi in configuration ck, N t
k the random variable measuring the

number of completely packed bins that use configuration ck at time t. Then, at time

t the number of items with size oi in fully filled bins is:

K∑

k=1

qikN t
k, (5.1)

where K is the number of perfect-packing configurations in the system. Let us denote

by At
i the number of items of size oi in all filled bins at time t, Bt

i the number of items

of size oi in all partially filled bins. Obviously, we have:

At
i =

K∑

k=1

qikN t
k + Bt

i . (5.2)

Representing the above equation in matrix form, we get our stochastic model as:

At = QN t + Bt, (5.3)

where At = (At
1, · · · ,At

J(D))
′, N t = (N t

1 , · · · ,N t
K)′, Bt = (Bt

1, · · · ,Bt
J(D))

′, and Q =

(qij)J(D)×K .

1. Relationship between EWOPT
n , λ and Λ

Let λ = (λ1, · · · , λJ(D))
′, and define a J(D)-dimensional cone as Λ = {Qf : f > 0}.

Next, we study the asymptotic behavior of optimal expected waste EWOPT
n , and show

that EWOPT
n asymptotically only depends on the relationship of λ and Λ.

a. λ Is Outside of Cone Λ

Theorem 15 If λ is exterior to Λ, then the optimal expected waste is EWOPT
n =

Θ(n).

91

Proof. Before proving the theorem, let’s first address the relationship among

partially filled items Bt, the size of bins ~B = (B1, B2, · · · , BD), and waste space Wt.

Recall that the waste space of the system is the volume difference between filled bins

and all arrived items. Obviously, the waste space is determined by Bt and the volume

of bins. Their relationship could be shown as the following lemma.

Lemma 16 In our hyperbox bin-packing system, the waste at time step t of any on-

line packing algorithm is:

EWt = Θ(E[|Bt|]), (5.4)

where |Bt| =
∑J(D)

i=1 |Bt
i | is the total number of hyperbox-items in partially filled bins

at time t.

Proof. Recall that Bd is edge length of hyperbox-bins in dimension d, and that the

volume of each bin is B(D) =
∏D

d=1 Bd. At time step t, the number of partially filled

bins is in the range (|Bt|/B(D), |Bt|], where |Bt| is the number of partially filled bins.

For each partially filled bin, the waste space is in the range [1, B(D)). Therefore, we

have:

|Bt|
B(D)

< Wt < |Bt|B(D). (5.5)

Taking expectation on both side of the above inequality and noting that B(D) and

D are constants, we get:

EWt = Θ(E[|Bt|]). (5.6)

92

Now let’s start proving theorem 15, and first show that Wt = Ω(t). The total

number of items in partially filled bins is:

|Bt| = |At −QN t| = |At − λt + λt−QN t| (5.7)

≥ |λt−QN t| − |At − λt| (5.8)

= |λ−Q
N t

t
|t− |At − λt|. (5.9)

Let λ̄t = QN t/t and α = min{|λ − x| : x ∈ Λ}. Note that λ is outside of Λ and

α > 0. Because N t/t ≥ 0, λ̄t is a random point on the cone Λ. Taking expectation

on both side of (5.9), we get:

E
[
|Bt|

]
= E

[
|λ− λ̄t|t

]
− E

[
|At − λt|

]
(5.10)

≥ αt−
JD∑

i=1

E
[
|At

i − λit|
]
. (5.11)

Note that At
i follows binomial distribution with mean λit and variance λi(1 − λi)t.

Therefore,

E
[
|At

i − λit|
]
≤

√
V ar(At

i) = Θ(
√

t). (5.12)

Combining this with (5.11) and (5.4) gives:

EWOPT
t = Ω(t). (5.13)

Obviously, EWt = O(t). Therefore,

EWOPT
t = Θ(t), (5.14)

which yields the desired results for EWOPT
n = Θ(n).

93

b. λ Is on the Boundary of Cone Λ

Theorem 17 If λ is on the boundary of Λ, then the optimal expected waste is EWOPT
n =

Θ(
√

n).

Proof. In order to show the tight bound, we need to show E[WOPT
t] = Ω(

√
t)

and E[WOPT
t] = O(

√
t). The lower bound and the upper bound are shown in STEP

1 and STEP 2 respectively.

STEP 1. Note that Λ is a J(D)-dimensional cone. Denote by h = (h1, · · · , hJD)′

a unit-length vector that is normal to the boundary of the hyperplane of Λ. Also

note that if h′At > 0, h′At can be treated as the distance between point At and the

boundary of the hyperplane of Λ. Let ||Bt|| =
√∑J(D)

i=1 (Bt
i)

2. We have,

||Bt|| = ||At −QN t|| ≥ max(h′At, 0). (5.15)

Next, we examine the distribution of random variable h′At. Let X t
i , i = 1, · · · , J(D),

be a Bernoulli random variable measuring if the arriving item at time t has size oi.

By the previous description of our packing system, random variables X1
i , · · · , X t

i are

independent and identically distributed with PMF:

P [X t
i = 1] = λi. (5.16)

Obviously, we have At
i =

∑t
j=1 Xj

i . Therefore,

h′At =
J(D)∑

i=1

hiAt
i =

J(D)∑

i=1

hi

t∑

j=1

Xj
i (5.17)

=
t∑

j=1

J(D)∑

i=1

hiX
j
i

 . (5.18)

94

Let Zt =
(∑J(D)

i=1 hiX
t
i

)
. Because X1

i , · · · , X t
i are i.i.d random variables, Z1, · · · , Zt

are also independent and identically distributed. The expectation of Zt is:

E[Zt] = E

J(D)∑

i=1

hiX
t
i

 = h′λ. (5.19)

Note that λ is on the boundary of Λ. We have h′λ = 0, therefore, E[Zt] = 0. The

variance of Zt is:

V ar(Zt) = V ar

J(D)∑

i=1

hiX
t
i

 (5.20)

=
J(D)∑

i=1

h2
i V ar(X t

i) =
J(D)∑

i=1

h2
i λi(1− λi). (5.21)

Letting σ2 =
∑JD

i=1 h2
i λi(1 − λi) and applying central limit theorem on Zt, we get

that random variable
∑t

j=1 Zt/(σ
√

t) follows standard normal distribution as t →∞.

Using (5.18), we conclude that h′At follows normal distribution N(0, σ
√

t) as t →∞.

Therefore,

E[(h′At)+] =
∫ ∞

0
x

1√
2πσ

√
t
e−

x2

2σ2t dx =
σ
√

t√
2π

, (5.22)

as t →∞. Combining the above equation with (5.15), we get:

E[||Bt||] = Ω(
√

t). (5.23)

Noting that |Bt| ≥ ||Bt|| and using (5.4), we get desired result as:

EWOPT
t = Ω(

√
t). (5.24)

STEP 2: In this step, we present an algorithm that has expected waste EWt =

O(
√

t). Suppose that we have K perfect configurations. Because λ is on the boundary

of Λ, there exists a K-dimensional non-negative vector f = (f1, · · · , fK)′ such that

fk ∈ [0, 1], k = 1, · · · , K and Qf = λ, where Q is a J(D) ×K perfect configuration

95

matrix. Our algorithm proceeds in discrete phases H t. Initially at time step 0, H0 = 0

and there are no opened bins or arrived items. At each following time t, a random

item at with size ot comes to the system. Our packing algorithm first sets the current

phase number H t = H t−1, then packs at by the following rule. If there exists any

opened bins with configurations that have unoccupied slots for size ot, at will be

packed into one such slot. Otherwise, it keeps opening bins by the following process

until there is a vacant slot for size ot. In the bins-opening process, the algorithm sets

H t = H t + 1 and opens enough new bins with certain configurations such that there

are exactly dfkH
te bins having configuration ck in the system.

Next, we show that this algorithm has expected waste EWt = O(
√

t). Denote

by qik, i = 1, · · · , J(D), k = 1, · · · , K, the number of size oi in configuration ck, by St
i

the number of size-oi slots among opened bins at time t, by At
i the number of size-oi

items at time t. The expected waste at time t is:

E[Wt]=E

[∑J(D)

i=1 (St
i−At

i)
]
=
∑J(D)

i=1
E[St

i]−
∑J(D)

i=1
λit. (5.25)

Noting that

Si =
K∑

k=1

qikdfkH
te ≤

K∑

k=1

qikfkH
t +

K∑

k=1

qik, (5.26)

and that
∑K

k=1 qikfk = λi, we have:

E[St
i] ≤ λiE[H t] +

K∑

k=1

qik. (5.27)

Applying (5.27) into (5.25) and using that
∑J(D)

i=1 λi = 1, we have:

E[Wt] ≤ E[H t] + |Q| − t, (5.28)

where |Q| =
∑J(D)

i=1

∑K
k=1 qik is a constant that does not depend on t. Next, we

compute the expectation of phases H t. By the description of our algorithm, H t is the

96

minimum integral phase that ensures that all At
i items have enough slots to sit in all

opened bins. Therefore,

H t =
J(D)
max
i=1

[
inf{h : h ∈ Z, St

i ≥ At
i}

]
(5.29)

= max
J(D)
i=1 [inf{h: h∈Z,

∑K

k=1
qikdfkhe≥At

i}] (5.30)

≤ max
J(D)
i=1 [inf{h: h∈Z,λih≥At

i}] (5.31)

≤ max
J(D)
i=1

[At
i

λi
+1

]
=max

J(D)
i=1

[At
i

λi

]
+1. (5.32)

Note that At
i follows binomial distribution with mean λit and variance tλi(1 − λi).

At
i/λi follows binomial distribution B(t, t(1− λi)/λi). We have:

E

[
max

[At
i

λi

]]
= E

[
max

[At
i

λi

]
− t

]
+ t (5.33)

≤ E

J(D)∑

i=1

|A
t
i

λi

− t|

 + t. (5.34)

By Cauchy-Schwarz’s inequality, we have:

E

[
|A

t
i

λi

− t|
]
≤

√√√√V ar

(At
i

λi

)
=
√

t ·
√

1− λi

λi

. (5.35)

Applying (5.35) into (5.34) yields:

E

[
max

[At
i

λi

]]
≤ t +

√
t

J(D)∑

i=1

√
1− λi

λi

. (5.36)

Combining (5.36) with (5.32), (5.28), we have E[Wt] = O(
√

t).

Combining the results in STEP 1 and STEP 2, we have: EWOPT
n = Θ(

√
n)

when λ is on the boundary of Λ.

97

c. λ Is Inside of Cone Λ

Theorem 18 If λ is interior to Λ, then the optimal expected waste is EWOPT
n =

O(1).

Proof. The algorithm in [34] can be directly applied to our hyperbox packing.

By using the same reasoning as in [34], it is trivial to show that the algorithm has

expected waste EWn = O(1).

2. Multi-Dimensional Perfect Packing Theorem

Theorem 19 Suppose R, J , and B are positive integers with J ≤ B. We have an

infinite number of D-dimensional bins, which are hypercubes with edge length B, and

R lists of hyperbox-items SJ,D, each of which consists of JD hyperbox-items with edge

length ld = 1, · · · , J , d = 1, · · · , D in the dth dimension. The RJD items can be

perfectly packed into the bins if and only if R(J(J + 1)/2)D can be divided by BD.

Proof. Show necessity first. Note that the volume of each bin is BD and the total

volume of the one item list SJ,D is:

V ol(SJ,D) =
J∑

l1=1

J∑

l2=1

· · ·
J∑

lD−1=1

J∑

lD=1

l1l2 · · · lD (5.37)

=
J∑

l1=1

J∑

l2=1

· · ·
J∑

lD−1=1

l1l2 · · · lD−1

J∑

lD=1

lD (5.38)

=
J∑

l1=1

J∑

l2=1

· · ·
J∑

lD−1=1

l1l2 · · · lD−1
J(J + 1)

2
(5.39)

=

(
J(J + 1)

2

)D

. (5.40)

Obviously, if the R copies of SJ,D can be perfectly packed into hypercube bins, the

total volume of the RJD items has to be divisible by the volume of one bin. There-

fore, R(J(J + 1)/2)D must be divisible by BD.

98

Now prove the sufficiency by induction.

As shown in [31], the packing theorem holds for one dimensional case.

Assume the sufficiency holds for D̄-dimensional case (D̄ ≥ 1), in other words,

if R(J(J + 1)/2)D̄ can be divided by BD̄, then R copies of SJ,D̄ can be packed into

hypercubes with length B.

We next show that the theorem holds for D̄+1. As R (J(J + 1)/2)D̄+1 is divisible

by BD̄+1, we have,

R

(
J(J + 1)

2

)D̄+1

= cBD̄+1, (5.41)

where c ∈ Z+, which implies:

RJ(J+1)
2

B
=

(
RD̄c

) 1
D̄+1 . (5.42)

Lemma 20 The number
(
RD̄c

)1/(D̄+1)
in (5.42) is a positive integer.

Proof. Note that R, D̄, J, B ∈ Z+ and the left hand side of (5.42) is a positive

rational number. Therefore,
(
RD̄c

)1/(D̄+1) ∈ Q.

Assume that
(
RD̄c

)1/(D̄+1)
is a non-integer rational number. Then, RD̄c is also

a non-integer rational number, which contradicts the fact R, D̄, c ∈ Z+.

Next, we show how to perfectly pack the RJ D̄+1 hyperbox-items into hypercube-

bins. Divide the RJ D̄+1 hyperbox-items into J D̄ groups so that hyperbox-items in

each group have the same edge length in dimensions from 1 to D̄. Obviously, each

group has RJ hyperbox-items and their length in the (D̄ + 1)th dimension increases

from 1 to J . Denote by ld,m the length in the dth, d = 1, · · · , D̄ dimension of group m,

m = 1, · · · , J D̄. Note that the problem of packing the hyperbox-items in group m into

hyper-box with size (l1,m, · · · , lD̄,m, B) is equivalent to the problem of packing R lists

of one-dimensional item SJ1 into bins with size B. Lemma 20 and one-dimensional

99

perfect packing theorem in [31] indicates that hyper-boxes in group m can be piled into

(RD̄c)1/(D̄+1) bigger hyper-boxes with size (l1,m, · · · , lD̄,m, B). Consider the problem

of packing the resulting bigger hyper-boxes in each group m into (D̄+1)-dimensional

hypercube with length B. As ld,m = 1, · · · , J for d = 1, · · · , D̄, m = 1, · · · , J D̄,

the problem is equivalent to the problem of packing (RD̄c)1/(D̄+1) lists SJ,D̄ into D̄-

dimensional hyper-boxes with length B. By (5.42), we have:

(RD̄c)
1

D̄+1

J(J+1)
2

B

D̄

= c. (5.43)

The induction hypothesis implies that the resulting bigger hyper-boxes in each group

can be perfectly packed into (D̄ + 1)-dimensional hypercubes with length B.

3. Discrete Uniform Distribution

Theorem 21 In the online and discrete hyperbox packing, random items come to

the system and their edge lengths in the dth, d = 1, · · · , D, dimension independently

follow uniform distribution with PMF:

P [Ld = x] = 1/Jd, (5.44)

where x = 1, · · · , Jd, Jd ≤ Bd − 2, and Bd is the edge length of hyperbox-bins in the

d-th dimension. Then, the optimal expected waste is:

EWOPT
n = Θ(1). (5.45)

Proof. Before proving the theorem, we next address the following important

lemma.

Lemma 22 Let ck = (ck[1], · · · , ck[J(D)])′ be a configuration that precisely packs a

list SJ,D of D-dimensional hyperbox-items into hyperbox-bins with edge length Bd in

100

dimension d, where J(D) =
∏D

d=1 Jd, d = 1, · · · , D, ck[i] is the number of items with

size oi in the list SJ,D. Denote by qik = ck[i] the number of items with size oi in

configuration ck. Then, there exists a square matrix QD = (qik)J(D)×J(D) such that

J(D)-dimensional vector eD = (1/J(D), · · · , 1/J(D))′ is in the interior of the cone

ΛD = {QDfD : fD ≥ 0), where fD is any positive vector with J(D)-dimensions.

Note that Theorem 21 follows by applying this lemma to the stability property

of D-dimensional hyper-box packing. Therefore, we just need to prove Lemma 22.

We prove it by induction. Using our previous notation, D-dimensional hyper-

boxes with size oi have length b((i−1) mod J(d))/J(d−1)c+1 in the dth dimension,

where d = 1, · · · , D.

STEP 1. When D = 1, we have oi = i where i = 1, · · · , J1. By [31], there exist

rk, sk ∈ Z+ and J1 perfect configurations ck, k = 1, · · · , j, such that ck[i] = rk for

i 6= k and ck[k] = sk + rk. Therefore, we have:

Q1=

r1+s1 r2 · · · rk · · · rJ1

r1 r2 + s2 · · · rk · · · rJ1

...
...

. . .
...

...

r1 r2 · · · rk + sk · · · rJ1

...
...

...
. . .

...

r1 r2 rk rJ1 + sJ1

, (5.46)

in which each column is a perfect configuration. To make sure that e1 = (1/J1, · · · , 1/J1)
′

is in the interior of cone Λ1, we next show that e1 and its ε1-neighborhood for suffi-

ciently small ε1 are on the cone. By the definition of cone, if matrix equation

Q1f1 = e1, (5.47)

101

has positive solution f1 > 0 then e1 is in cone Λ1. Using Gaussian Elimination and

letting the ith row Q1[i] = (Q1[i]−Q1[i + 1])/si, i = 1, · · · , J1 − 1, we get:

1 − s2

s1
0 · · · 0 | 0

0 1 − s3

s2
· · · 0 | 0

...
.

...
...

0 0 0 1 − sJ1

sJ1−1
| 0

r1 r2 r3 · · · rJ1
+sJ1

| 1
J1

f1[1]

f1[2]

...

f1[J1−1]

f1[J1]

. (5.48)

Repeatedly replace the J1th row Q1[J1] by Q1[J1]−Ei ∗Q1[i], where i = 1, · · · , J1− 1

and

E1 = r1, (5.49)

Ei+1 = ri+1 +
si+1

si

Ei. (5.50)

The above row operations will eliminate the first J1 − 1 elements of row J1. Solving

matrix equation (5.48) by backward substitution, we get:

f1[i] = f1[i + 1]
si+1

si

, i = 1, · · · , J1 − 1 (5.51)

f1[J1] =
1

J1

1

EJ1 + sJ1

. (5.52)

Note that the Ei are all positive rational numbers. Therefore, f1 > 0 and e1 is in Λ1.

Now we show that ∃ε1 > 0 such that ε1-neighborhood of e1 is also on Λ1. Let e∗1 =

(1/J1 + δ1, · · · , 1/J1 + δJ1) be any point in the ε1-neighborhood, i.e.
√∑J1

i=1 δ2
i ≤ ε1.

Our objective is to find proper ε1 such that matrix equation

Q1f
∗
1 = e∗1, (5.53)

has non-negative solution, i.e. f ∗1 ≥ 0, which would imply e∗1 is also on the cone Λ1.

Using the above Gaussian Elimination technique, we get matrix equation (5.54) as

102

in Figure 32. Backward substitution of f ∗1 [J1] into matrix equation (5.54) from row

1 − s2

s1
0 · · · 0 | (δ1 − δ2)/s1

0 1 − s3

s2
· · · 0 | (δ2 − δ3)/s2

...
.

...
...

0 0 0 1 − sJ1

sJ1−1
| (δJ1−1 − δJ1)/sJ1−1

0 0 0 · · · EJ1 + sJ1 | 1
J1

+ δJ1 −
∑J1−1

i=1 Ei
δi−δi−1

si

f ∗1 [1]

f ∗1 [2]

...

f ∗1 [J1 − 1]

f ∗1 [J1]

.(5.54)

Fig. 32. Matrix equation Q1e
∗
1 = f ∗1 after Gaussian elimination.

J1 − 1 to row 1 gives:

f ∗1 [i] =
sJ1

si

f ∗1 [J1] +
δi − δJ1

si

, (5.55)

where i = 1, · · · , J1 − 1. Note that sJ1 ≥ 1 and δi − δJ1 ≥ −2ε1. Equation (5.55)

implies that f ∗1 [J1] ≥ 2ε1 > 0 will ensure f ∗1 ≥ 0. By the last row of matrix equation

(5.54), we get f ∗1 [J1]:

f ∗1 [J1] =
1
J1

+ δJ1 −
∑J1−1

i=1 Ei
δi−δi−1

si

(EJ1 + sJ1)
, (5.56)

which would be larger than or equal to 2ε1 if the following inequality holds:

1

J1

− ε1 −
J1−1∑

i=1

Ei
2ε1

si

≥ (EJ1 + sJ1)2ε1. (5.57)

Solving the inequality, we get that when

ε1 ≤ 1

J1

1

1 + 2
∑J1−1

i=1
Ei

si
+ 2(EJ1 + sJ1)

, (5.58)

(5.57) holds ⇒ f ∗1 [J1] ≥ 2ε1 ⇒ f ∗1 ≥ 0, therefore, ε1-neighborhood of e1 is in Λ1.

Combining this with previous result that e1 is on cone Λ1, we conclude that e1 is in

the interior of cone Λ1.

103

STEP 2. Assume that the lemma is true for D̄ dimensional hyper-box packing.

In other words, there exists J(D̄)× J(D̄) matrix QD̄ such that: (i). each column of

QD̄ is a perfect packing configuration; (ii). eD̄ is inside of the cone ΛD̄ spanned by

QD̄. In the next step, we show that for (D̄ + 1)-dimensional hyper-boxes, the lemma

also holds.

STEP 3. We claim that J(D̄ + 1) × J(D̄ + 1) square matrix QD̄+1 in (5.59)

of Figure 33 meets our needs, where rk and sk are the same as those in matrix Q1.

(r1 + s1)QD̄ r2QD̄ · · · rkQD̄ · · · rJD̄+1
QD̄

r1QD̄ (r2 + s2)QD̄ · · · rkQD̄ · · · rJD̄+1
QD̄

...
...

. . .
...

...

r1QD̄ r2QD̄ · · · (rk + sk)QD̄ · · · rJD̄+1
QD̄

...
...

...
. . .

...

r1QD̄ r2QD̄ rkQD̄ (rJD̄+1
+ sJD̄+1

)QD̄

, (5.59)

Fig. 33. Perfect configuration matrix in (D̄ + 1)-dimensional hypercube packing.

First, we show that each column of matrix (5.59) is a perfect configuration. Note

that the kth column of matrix QD̄+1 consists of JD̄+1 sub-matrices Ck[i]QD̄, where

i = 1, · · · , JD̄+1 and

Ck[i] =

rk, if i 6= k

sk + rk, if i = k.
(5.60)

Also note that Ck[i]Qn[x][y] represents the number of (D̄+1)-dimensional hyper-boxes

with size o(i−1)J(D̄)+x in configuration (k − 1)J(D̄) + y. By the assumption in STEP

2, we can use sub-matrix Ck[i]QD̄ to pack hyperbox-items with size from o(i−1)J(D̄)+1

to oiJ(D̄) into bigger hyperbox that have edge length Bd in dimensions d = 1, · · · , D̄

104

and edge length i in the (D̄ + 1)th dimension. Packing these bigger hyper-boxes into

hyperbox-bins is equivalent to packing 1-dimensional items. Reusing the result in

[31], we know that each column in QD̄+1 is a perfect configuration.

Next, we show that eD̄+1 = (1/J(D̄+1), · · · , 1/J(D̄+1))′ and its εD̄+1-neighborhood

are on the cone ΛD̄+1 spanned by QD̄+1. It is easy to check that there exists non-

negative vector fD̄+1 = (f ′̄Df1[1], · · · , f ′̄Df1[JD̄+1])
′ > 0 such that:

QD̄+1fD̄+1 = eD̄+1. (5.61)

Therefore, eD̄+1 is on the cone ΛD̄+1. Now we show that the εD̄+1-neighborhood

of eD̄+1 is also on ΛD̄+1. Let e∗̄D+1 = eD̄+1 + (∆1, · · · , ∆JD̄+1
)′ be any point in the

neighborhood, where

∆i = (δi[1], · · · , δi[J(D̄)])′, (5.62)

and
∑JD̄+1

i=1 ‖∆i‖2 ≤ ε2
D̄+1. The positive solution f ∗̄D+1 > 0 of matrix equation:

QD̄+1f
∗̄
D+1 = e∗̄D+1, (5.63)

would imply that e∗̄D+1 is in cone ΛD̄+1. Applying the Gaussian Elimination technique

in STEP 1 to the sub-matrices in QD̄+1 rather than each elements, we get the matrix

as in Figure 34, where ∆∗
JD̄+1

= JD̄+1

(
∆JD̄+1

−∑JD̄+1−1
i=1 Ei(∆i −∆i−1)/si

)
. Applying

backward substitution in matrix in Figure 34, we get:

QD̄f ∗̄D+1[JD̄+1] =
1

JD̄+1(EJD̄+1
+ sJD̄+1

)
(eD̄ + ∆∗

JD̄+1
), (5.64)

QD̄f ∗̄D+1[i] =
sJD̄+1

siJD̄+1(EJD̄+1
+ sJD̄+1

)
(eD̄ + ∆∗

i), (5.65)

105

QD̄ − s2
s1

QD̄ 0 · · · 0 | (∆1 −∆2)/s1

0 QD̄ − s3
s2

QD̄ · · · 0 | (∆2 −∆3)/s2

...
.

...
...

0 0 0 QD̄ −
sJD̄+1

sJD̄+1−1
QD̄ | ∆JD̄+1−1−∆JD̄+1

s(JD̄+1−1)

0 0 0 · · · (EJD̄+1
+sJD̄+1

)QD̄ | eD̄+∆∗

JD̄+1

f ∗̄D+1[1]

f ∗̄D+1[2]

...

f ∗̄
D+1

[JD̄+1−1]

f ∗̄
D+1

[JD̄+1]

,

Fig. 34. Matrix equation QD̄+1e
∗̄
D+1 = f ∗̄D+1 after Gaussian elimination.

where ∆∗
i = ∆∗

JD̄+1
+JD̄+1(EJD̄+1

+sJD̄+1
)(∆i−∆JD̄+1

)/sJD̄+1
, and i = 1, · · · , JD̄+1−1.

By the assumptions in STEP 2, the following inequalities will guarantee f ∗̄D+1 ≥ 0:

||∆∗
JD̄+1

|| ≤ εD̄, (5.66)

||∆∗
i || ≤ εD̄. (5.67)

Solving the above inequalities, we get:

εD̄+1 ≤
εD̄

2J(D̄ + 1)(1 +
∑JD̄+1

i=1
Ei

si
)
. (5.68)

B. Theoretical Algorithms of Discrete Hyperbox Packing

Recall that the expected waste is the major metric for us to measure the average-

case performance of hyperbox packing algorithms, and our previous results show that

optimal expected waste EWOPT
n asymptotically takes three forms Θ(1), Θ(

√
n), and

Θ(n) according to the relationship between λ and Λ. We are interested in inventing

hyperbox packing algorithms that asymptotically have sub-linear expected waste. In

this section, we present two hyperbox bin-packing algorithms that have sub-linear

106

expected waste O(
√

n) if λ is on the boundary of cone Λ.

1. Grouping Packing (GP) Algorithm

Input: It proceeds with n steps. At each time step from 1 to n, one item with size oi

randomly arrives with rational probability λi, i = 1, · · · , J . The input also includes

infinite number of closed bins.

Output: A couple of opened bins that contain the n random arrival items. The total

size of item in each opened bin does not exceed each bin’s size B.

1. According to the items size o1, · · · , oJ and the bins size B, find the perfect

configurations and calculate the perfect packing matrix Q.

2. Let f = Q−1λ, where f = (f1, · · · , fK)′.

3. Find a positive integer T s.t. f1T, · · · , fKT are all integers.

4. For each random arrival item with size oi do

5. If among the opened bins, there exist available slots for size oi, put the item

into one of those slots.

6. Else open a group of T
∑K

k=1 fk bins, in which Tfk bins are assigned configu-

ration ck. Then, put the item with size oi into one of available slots.

7. End For

Fig. 35. Grouping bin packing algorithm.

Let’s first deal with a special case of the hyperbox packing problem, in which

the items are of size o1, o2, · · · , oJ , and the size arriving probability λi, i = 1, · · · , J ,

are rational.

107

Our algorithm to solve this problem is called Grouping Packing (GP) algorithm.

Note that the expected number of size oi at time t is tλi, i = 1, . . . , J . The key idea

of our algorithm is to perfectly pack these expected items using grouping technique.

Note that λ is on the cone Λ. There exists a vector f = (f1, · · · , fK)′ ≥ 0 such

that Qf = λ. As each element in matrix Q is an integer, therefore, f = Q−1λ is a

rational vector. Let T be a positive integer such that fkT , k = 1, · · · , K, are integers.

Then, equation

QfT = λT, (5.69)

implies that λiT , i = 1, · · · , J , are also integers. By the definition of perfect packing

matrix Q, we could use fkT bins with assigned configuration ck, k = 1, · · · , K, to

perfectly pack λiT items with size oi, i = 1, · · · , J . Note that λiT is the expected

number of size oi at time step T . Our algorithm proceeds as follows. When an item

with size oi comes into the system, it checks if there are available slots for that size.

If it is yes, the item will be put into one of those slots. Otherwise, it opens
∑K

k=1 fkT

bins, in which fkT bins are assigned configuration ck, k = 1, · · · , K, and pack the

item accordingly. The detailed description of the algorithm is shown as in Figure 35.

Obviously, the above algorithm is polynomial to the number of packed items n.

Next, we show that its expected waste is O(
√

n).

Note that in a newly opened bin with assigned configuration ck, there are qik

available slots for size oi, where qik is the (i, k)th element of matrix Q. By line 6

in the above algorithm, a group of Tfk bins with configuration ck, k = 1, · · · , K, is

opened whenever no slots are available for the arriving item. In the group of opened

bins, the number of available slots for size i is:

K∑

k=1

Tfkqik = Tλi. (5.70)

108

Let At
i be random variable measuring the number of arrival size oi at time t. Then,

the number of groups required by size oi is At
i/(Tλi). Let G = B

∑K
k=1 Tfk be the

total size of bins in a group. The expected waste of the algorithm is:

EWt ≤ GE

[
max{ A

t
i

Tλi

, i = 1, · · · , K} −min{ A
t
i

Tλi

, i = 1, · · · , K}+ 1

]
(5.71)

≤ G

T
E

[
max{A

t
i

λi

, i = 1, · · · , K} −min{A
t
i

λi

, i = 1, · · · , K}
]

+ G (5.72)

≤ G

T
E

J∑

i=1

J∑

j=1

|A
t
i

λi

− At
j

λj

|

 + G (5.73)

≤ G

T

J∑

i=1

J∑

j=1

E

[
|A

t
i

λi

− At
j

λj

|
]

+ G (5.74)

≤ G

T

J∑

i=1

J∑

j=1

E

[
|A

t
i

λi

− t|+ |A
t
j

λj

− t|
]

+ G. (5.75)

Note that At
i follows binomial distribution B(λit, λi(1−λi)t), At

i/λi follows binomial

distribution with mean t, and variance t(1 − λi)/λi. By Schwarz-Cauchy inequality,

we have:

E

[
|A

t
i

λi

− t|
]
≤

√
V ar(At

i/λi) ≤
√

t ·
√

1− λi

λi

. (5.76)

Combining the above equation with (5.75), we have:

EWt ≤ 2G

T
J
√

t
J∑

i=1

√
1− λi

λi

+ G. (5.77)

As G, T ,and J do not depend on time step t, therefore, the expected waste at time

step t is O(
√

t).

2. Accumulative Packing (AP) Algorithm

Note that this grouping packing (GP) algorithm restricts the size arriving probability

to be rational. Next, we present another algorithm that removes this restriction.

109

Suppose that we have K perfect configurations. Because λ is on the boundary

of Λ, there exists a K-dimensional non-negative vector f = (f1, · · · , fK)′ such that

fk ∈ [0, 1], k = 1, · · · , K and Qf = λ, where Q is a JD × K perfect configuration

matrix. Our algorithm proceeds in discrete phases H t. In time step 0, H0 = 0

and there are no opened hypercubes (bins) or arrived hyper-boxes(items). At each

time step t, a random hyper-box (item) at with size ot comes to the system. Our

packing algorithm first sets the current phase number as H t = H t−1, then packs at

by the following rule. If there exists any opened bins with configurations that have

unoccupied slots for size ot, at will be packed into one such slot. Otherwise, it keeps

opening bins by the following process until there is a vacant slot for size ot. In the

bins-opening process, the algorithm sets H t = H t+1 and opens enough new bins with

certain configurations such that there are exactly dfkH
te bins having configuration

ck in the system.

Note that the algorithm is the same as the algorithm in STEP 2 of proof of

theorem 17. As shown in the proof of the theorem, the expected waste of AP algorithm

is: O(
√

n). Since the λ is on the boundary of Λ, and EWOPT
n = Θ(

√
n), we have

EWAP
n = Θ(

√
n) as well.

C. Average-Case Analysis of Framework-Based Algorithms

Recall that there are many existing results on average-case analysis of 1D packing

algorithms, and it would be nice to extend those 1D results to hyperbox packing.

Next, we will show the expected waste relationship between 1D packing algorithm A

and framework based algorithm EA.

Theorem 23 Denote by A a 1D packing algorithms, and there are D different 1-

dimensional bin packing problems where bins’ sizes are B1, · · · , BD. Let Θ(f(n, d))

110

be the expected waste of algorithm A that packs n items into bins of size Bd, d =

1, · · · , D, and items’ sizes follow discrete distribution Fd. For the hyperbox packing

problem where bins’ size is ~B = (B1, · · · , BD), and items’ edge length in dimension d

independently follow distribution Fd, the expected waste of the framework algorithm

EA for the packing is dominated by the maximum of Θ(f(n, d)) for d = 1, · · · , D.

Proof. Recall that in framework algorithms, all items packed in the dth dimen-

sion have the same edge length in dimensions 1, · · · , d − 1, and items packed in dth

dimension will form a strip. Note that the waste area in a partially-packed bin could

be categorized into D types, where the ith type are those hyperbox areas with size:

(l1, l2, · · · , li−1, w
l1,···,li−1

i , Bi+1, BD), where ld, d = 1, · · · , i − 1, are the edge lengths

of packed i-pile in dimension d, w
l1,···,li−1

i is the total waste of length in i-pile of size

(l1, · · · , li−1) in dimensions 1 to i − 1, and Bd, d = i + 1, · · · , D, is bins’ edge length

in dimension d. Figure 36 gives an example of the waste types in 2D packing. Since

the edge length in dimension d of hyperbox bins independently follows distribution

Fd, w
l1,···,li−1

i is corresponding to the waste of algorithm A in the 1D packing.

Denote by W [i] the waste space in the ith dimension. Obviously, the total waste

of a packing instance is:

W =
D∑

d=1

W [d]. (5.78)

Also note that

W [i] =
B1∑

l1=1

· · ·
Bi−1∑

li−1=1

(
i−1∏

d=1

ld

)
wl1,···,li−1

i

D∏

d=i+1

Bd

 . (5.79)

Therefore, W will be dominated by the biggest w[i] in all dimensions from 1 to D.

Using the results form theorem 23, we have:

Corollary 24 In a hyperbox packing, let the edge length of hyperbox-item indepen-

111

Type 1

Type 2

B1

B2

Fig. 36. The waste type in 2D packing.

dently follows distribution F , and denote by EWOPT
n the optimal expect waste for

corresponding 1D packing under distribution F . Then, we have:

EWESS
n =

Θ(EWOPT
n) if EWOPT

n 6= Θ(1)

O(log n) otherwise
. (5.80)

Corollary 25 Framework based algorithms EBF and EFF for hyperbox packing with

bins’ size ~B = (B1, · · · , BD) have bounded expected waste Θ(1) if all the edge length of

items independently follows uniform distribution U{Bd − 2, Bd}, where d = 1, · · · , D.

112

D. Optimal Expected Waste of Continuous Hyperbox Packing

We are also interested in comparing the optimal expected waste between the con-

tinuous hyperbox packing and discrete packing. Next, we show that the optimal

expected waste for continuous hyperbox packing is Ω(n1/2) if the edge length of items

independently follow some uniform distribution.

Theorem 26 In the online and continuous D-dimensional hyperbox packing, the edge

lengths of hyperboxes-items in the dth, d = 1, · · · , D, dimension independently follow

uniform distribution U(0, u], where u ∈ (0, 1], and bins are unit hypercube with edge

length 1. Then, the optimal expected waste is EWOPT
n = Ω(n1/2), where n is the

number of items to be packed.

Proof. Let at+1 be the (t + 1)th item (hyper-box), where t = 0, · · · , n − 1 is the

index of all items. Denote by Ld
at+1

, d = 1, · · · , D, the random variable measuring

the edge length of hyper-box at+1 in the dth dimension. We next estimate the lower

bound of expected waste for any online packing algorithm A.

Denote by ω(t) the random variable measuring the waste space after t items

(hyper-boxes) have been packed into bins. Let Ld
ai

, i = 1, · · · , t, d = 1, · · · , D, be

probability space of random variable Ld
ai

. By conditional expectation, we have:

E[ω(t)] = E[E[ω(t)|{L1
a1

,···,Ld
a1
},···,{L1

at
,···,Ld

at
}]]. (5.81)

Denote by F t
as

a Bernoulli random variable indicting whether item as is last in a bin at

time step t, t ≥ s, by Uat+1 a random variable measuring the volume of unused space

in the bin, in which item at+1 is just packed by algorithm A. Let δ = uD+1n−1/2/2D+2.

Then, the inner expectation of the right hand side in (5.81) can be computed as:

E
[
ω(t)|{L1

a1
, · · · ,Ld

a1
}, · · · , {L1

at
, · · · ,Ld

at
}
]

(5.82)

113

=
t−1∑

s=0

E
[
F t

as+1
Uas+1|L1

as+1
, · · · ,Ld

as+1

]
(5.83)

≥
t−1∑

s=0

(δ
∏D

d=2
Ld

as+1)P [F t
as+1

=1,Uas+1≥δ
∏D

d=2
Ld

as+1]. (5.84)

Applying (5.84) into (5.81) and using that Ld
as+1

follows uniform distribution U(0, u],,

we get:

E [ω(t)]

≥ E[
∑t−1

s=0
δ
∏D

d=2
Ld

as+1
P [F t

as+1
=1,Uas+1≥δ

∏D

d=2
Ld

as+1]]

= δ(u
2)

D−1 ∑t−1

s=0
P [F t

as+1
=1,Uas+1≥δ

∏D

d=2
Ld

s+1]

≥ δ(u
2)

D−1 ∑t−1

s=0(P [F t
as+1

=1]−P [Uas+1≤δ
∏D

d=2
Ld

s+1]). (5.85)

To estimate the lower bound of of (5.85), we first compute the first term in the

summation. Let St be the volume summation of first t items. Note that the number of

partially filled bins is at least St after the first t items having been packed. Therefore,

t−1∑

s=0

P
[
F t

as+1
= 1

]
(5.86)

≥ E[St] = E

[
t−1∑

s=0

D∏

d=1

Ld
as+1

]
= t

(
u

2

)D

. (5.87)

To estimate the second term inside the summation of (5.85), we use the following

lemma.

Lemma 27 Let’s use the same random variable Uat+1 as mentioned before and denote

by v(t) a random variable measuring the number of such partially filled bins at time

step t that consist of at least one unused hyper-box room with the edge length in the first

dimension larger than or equal to uD+1/2D+2, the edge length in the dth dimension,

114

d = 2, · · · , D, larger than or equal to Ld
at+1

. Then, we have:

P

[
Uat+1 ≤ δ

D∏

d=2

Ld
at+1

]
≤ uD

2D+1
+ P

[
v(t) ≥ n1/2

]
, (5.88)

Proof.

P

[
Uat+1 ≤ δ

D∏

d=2

Ld
at+1

]
(5.89)

≤ P

[
L1

at+1
≤ uD+1

2D+2

]

+ P

[
L1

at+1
≥ uD+1

2D+2
, Uat+1 ≤ δ

D∏

d=2

Ld
at+1

]
. (5.90)

Note that L1
at+1

follows uniform distribution U(0, u]. Therefore, the first term of

(5.90) is:

P

[
L1

at+1
≤ uD+1

2D+2

]
=

uD

2D+2
. (5.91)

The second term of (5.90) is:

P

[
L1

at+1
≥ uD+1

2D+2
, Uat+1 ≤ δ

D∏

d=2

Ld
at+1

]
(5.92)

≤ P
[
v(t)≤n1/2,L1

at+1
≥uD+1

2D+2 ,Uat+1≤δ
∏D

d=2
Ld

at+1

]

+ P
[
v(t) ≥ n1/2

]
(5.93)

Recall that Uat+1 is the unused space of the partially filled bin, in which item at+1 is

filled by algorithm A and note that if L1
at+1

≥ uD+1/2D+2, hyper-box at+1 can only be

packed in one of the above v(t) bins. Let Bi, i = 1, · · · , v(t), be these partially filled

bins. Then the first term of equation (5.93) is less than or equal to:

v(t)∑

i=1

P [v(t)≤n1/2,Uat+1≤δ
∏D

d=2
Ld

at+1
| pack at+1 into Bi]. (5.94)

If algorithm A packs hyper-box at+1 into bin Bi and leaves unused space less than or

equal to δ
∏D

d=2 Ld
at+1

, then there exists a positive number Ri ≥ δ such that Ri − δ ≤

115

L1
at+1

≤ Ri. Therefore, (5.94) is less than or equal to:

v(t)∑

i=1

P [v(t)≤n1/2,Ri−δ≤L1
at+1

≤Ri| pack at+1 into Bi]. (5.95)

Using that L1
at+1

follows uniform distribution U(0, u] and δ = uD+1n−1/2/2D+2, we

get that (5.95) is less than or equal to:

n1/2 δ

u
=

uD

2D+2
. (5.96)

Wrapping up (5.92), (5.93), (5.94), (5.95), (5.96), we get that the second term of

(5.90) as:

P

[
L1

at+1
≥ uD+1

2D+2
, Uat+1 ≤ δ

D∏

d=2

Ld
at+1

]
(5.97)

≤ uD

2D+2
+ P

[
v(t) ≥ n1/2

]
. (5.98)

Combining the above inequality (5.98) with (5.91), (5.90), and (5.89), we get:

P

[
Uat+1 ≤ δ

D∏

d=2

Ld
at+1

]
≤ uD

2D+1
+ P

[
v(t) ≥ n1/2

]
. (5.99)

Applying (5.87) and (5.88) into (5.85), we get:

E [ω(t)] (5.100)

≥ δ
(

u

2

)D−1
(

tuD

2D+1
−

t−1∑

s=0

P
[
v(s) ≥ n1/2

])
. (5.101)

Next, we discuss how the value of
∑n−1

s=0 P [v(s) ≥ n1/2] affects the expected waste

E[ω(t)] at time step t. On one hand, if it is less than or equal to nuD/(3 · 2D+1),

applying δ = uD+1n−1/2/2D+2 into (5.101) will imply that when t ≥ n/2:

E [ω(t)] ≥ δ
(

u

2

)D−1
(

tuD

2D+1
− nuD

3 · 2D+1

)
(5.102)

116

=
u3Dn1/2

3 · 23D+3
. (5.103)

Note that ω(t) ≥ 0. (5.103) further implies:

E

[
1

n

n∑

t=1

ω(t)

]
≥ E

 1

n

n∑

t=n/2

ω(t)

 =

u3Dn1/2

3 · 23D+4
. (5.104)

On the other hand, if
∑n−1

s=0 P
[
v(s) ≥ n1/2

]
≥ nuD

3·2D+1 , we have:

E

[
1

n

n∑

t=1

ω(t)

]
(5.105)

= E

[
1

n

n∑

t=1

E
[
ω(t) | L1

at+1
, · · · ,Ld

at+1

]]
. (5.106)

By the definition of random variable v(t), we have:

E
[
ω(t) | L1

at+1
, · · · ,Ld

at+1

]
(5.107)

≥ P
[
v(t) ≥ n1/2

]
n1/2uD+1

2D+2

D∏

d=2

Ld
at+1

. (5.108)

Applying (5.108) into (5.106) and noting that Ld
at+1

follows uniform distribution

U(0, u], as well as
∑n−1

s=0 P
[
v(s) ≥ n1/2

]
≥ nuD/(3 · 2D+1), we get:

E

[
1

n

n∑

t=1

ω(t)

]
≥ u3Dn1/2

3 · 23D+2
. (5.109)

Combining (5.104) and (5.109), we get:

E

[
1

n

n∑

t=1

ω(t)

]
≥ u3Dn1/2

3 · 23D+4
, (5.110)

which implies that E[ω(n)] is Ω(n1/2).

According to our results, the distribution F of the edge lengths of arriving

hyperbox-items affects the optimal expected waste of hyperbox packing. In the case

of uniform distribution, discrete distribution U{J,B} has asymptotically smaller ex-

pected waste than continuous distribution U(0, u]. We next discuss the expected

117

waste of a hyperbox packing with the mixed above two distributions, under which

edge lengths in some dimensions follow discrete distribution U{J,B} while others

follow continuous distribution U(0, u], where u = J/B. Without loss of generality,

we assume that the first Dc dimensions follow continuous distribution U(0, u]. By

applying the similar proof as in theorem 26, we may get the following corollary.

Corollary 28 Given a D-dimensional hypercube packing problem, if the edge lengths

of arriving hyper-boxes in first Dc, D > Dc ≥ 1, dimensions follow continuous distri-

bution U(0, J/B], J ≤ B, and the edge lengths in the rest D −Dc dimensions follow

discrete distribution U{J,B}, then the optimal expected waste of this hypercube pack-

ing is at least EWOPT
n = Ω(n1/2).

118

CHAPTER VI

SUMMARY AND FUTURE WORK

A. Summary

In this dissertation, we mainly focused on extending 1D bin packing algorithms to

hyperbox packing and analyzed the performance of the extended algorithms. Because

of the complexity of the problem, we currently limited the items’ and bins’ sizes to

be discrete. The dissertation mainly consists of 5 chapters.

In the first chapter, we briefly introduced the classical bin packing problem and

its variants and explained the motivation of studying the problem. We stated the

complexity of the problem, illustrated a few real-world applications for the problem,

and showed the importance of extending classical 1D packing algorithm to hyperbox

packing.

In the second chapter, we reviewed the related past works on classical 1D packing

algorithms, which included Next Fit (NF), First Fit (FF), Best Fit (BF), Sum of

Squares (SS), First Fit Decreasing (FFD), and Best Fit Decreasing (BFD). After

reviewing how the algorithms work, we revisited the worst-case performance of the

algorithms via metric worst-case performance ratio, and briefly showed lower-bounds

and upper-bounds of the ratios. The techniques and notations used in this section are

referenced in chapter IV. We also reviewed the past results on average-case analysis

of classical 1D packing algorithms.

In the third chapter, we presented a framework algorithm that converted the

problem of hyperbox packing to 1D packing. The framework took two inputs: a 1D

packing algorithm and a hyperbox packing instance and output a hyperbox packing

algorithm. In this chapter, we presented notations and definitions, listed the key

119

points, specified in detail how the framework works, and illustrated some examples

of framework algorithms.

Since the framework significantly enriched the family of hyperbox packing algo-

rithms, the analysis of the performance of the algorithms became an issue. In chapter

IV, we focused on framework-based algorithms ENF, ESS, EFF, EBF, EFFD, and

EBFD that are the extensions of 1D algorithms Next Fit, Sum of Squares, First

Fit, Best Fit, First Fit Decreasing, and Best Fit Decreasing. We also used metric

worst-case performance ratio, and analyzed the worst-case performance of the

algorithms from the following three perspectives. First, we focused on studying the

relationship between the worst-case performance ratio of 1D algorithms and that of

extended algorithms, and revealed that the ratios were closely related if certain con-

ditions were met. Secondly, we used strip optimal algorithm (SOPT) as a baseline,

compared how well the extended algorithms perform compared to SOPT, and showed

the lower bounds and upper bounds for the ratios based on SOPT. Lastly, we used

the optimal algorithm as a baseline, and estimated the worst-case performance ratio

for algorithms EFF, EBF, EFFD, and EBFD.

Chapter V mainly dealt with the average-case analysis of hyperbox packing al-

gorithms by using metric expected waste, and consisted of the following four parts.

The first part was related to optimal expected waste, which is the expected waste for

optimal algorithms. We showed that optimal expected waste for hyperbox packing

asymptotically took three forms depending on the hyperbox-items’ size distribution

and hyperbox-boxes size. In the first part, we also showed an extended version of

the perfect packing theorem, and that optimal expected waste was Θ(1) when the

hyperbox-items’ edge lengths were independently drawn from some discrete uniform

distribution. In the second part, we presented two theoretical hyperbox packing algo-

rithms, and showed that their expected waste was Θ(
√

n) if optimal expected waste

120

was Θ(1) or Θ(
√

n). The third part focused on the analysis of the expected waste for

the framework-based algorithms ESS, EBF, and EFF. The last part of the chapter

dealt with the optimal expected waste for 2D bin packing where hyperbox-items’ edge

lengths were continuous.

B. Future Work

Future work on our framework could include the following aspects. First of all, our

current framework is limited to discrete packing, where hyperbox-items’ sizes are

discrete. Future work may consider extending the current framework to continuous

hyperbox packing, which could be done by converting items edge-lengths from con-

tinuous to discrete. For continuous edge length x, x ∈ (0, 1], of hyperbox-items, we

could use some rounding technique to make the conversion happen. For example, we

may first choose a very large integer M , and round up the edge-length x with the

following function:

r(x) =

1/2M if x ∈ (0, 1/2M]

1/2i if x ∈ (1/2i+1, 1/2i] and 1 ≤ i < M
. (6.1)

Since we round up the edge length and increase the to-be-packed items’ sizes, the

framework algorithm for the discrete items should also work for the continuous items.

Then, the continuous bin packing problem becomes discrete packing, and we may

apply our framework to construct an algorithm for it. The challenge of extending the

framework to continuous packing is to find right rounding functions, and compare

how the rounding functions affect the performance of continuous framework-based al-

gorithms. Analyzing the worst-case and the average-case performance for continuous

framework algorithms is also much harder than the analysis in discrete framework

packing.

121

Recall that bin packing with rotation that allows the rotation of hyperbox-items

is one of the variants of classical bin packing problems. Our current framework does

not allow the rotation of hyperbox-items, and future work may consider extending

the framework to this variant or any other variants as well. The challenge of allowing

rotation in framework-based algorithms is to find proper heuristic in rotation process.

Analyzing the performance of those framework-based algorithms with rotation will

be very difficult.

In the worst-case analysis of framework-based algorithms EFFD, we estimated

the upper bound of worst-case performance ratio by using the following equation:

R∞
EFFD = sup

B∈R
lim sup

OPT (L)→∞

EFFD(L, ~B)

SOPT (L, ~B)

SOPT (L, ~B)

OPT (L, ~B)
(6.2)

where EFFD(L, ~B), SOPT (L, ~B), and OPT (L, ~B) are the number of bins used by

algorithms EFFD, SOPT, and OPT respectively w.r.t packing instance L. By taking

advantage of the above equation, we reduced the complexity of the problem by es-

timating the upper bounds of supB∈R lim supSOPT (L)→∞ EFFD(L, ~B)/SOPT (L, ~B),

and supB∈R lim supOPT (L)→∞ SOPT (L, ~B)/OPT (L, ~B) respectively. Since we did not

do the case analysis for EFFD, the upper bound may not be tight enough, and future

work may consider approaching the upper bound via case analysis and improving

the upper bounds for EFFD and EBFD. Note that doing case analysis for 1D FFD

algorithm is already very difficult [6], [52], and Johnson [52] took about 100 pages in

his dissertation for the case analysis. Case analysis in multiple-dimensional hyperbox

packing would be much harder.

In the worst-case analysis of framework-based algorithm EFF and EBF, we esti-

mated the upper bound of worst-case performance ratio by case analysis, but because

of the complexity of the analysis, we only got results for 2D hyperbox packing. Fu-

ture work may consider a simpler case analysis method to reduce the complexity of

122

the problem, and getting results for higher dimension hyperbox packing. Even in 2D

hyperbox packing, the upper bound could be possibly improved in the future work.

In the average-case analysis of hyperbox packing, we estimated the optimal ex-

pect waste when the edge lengths of hyperbox-items independently follow discrete

uniform distribution. In the future work, we may consider some other distributions

for the edge length, or consider the hyperbox-items sizes’ distribution where the edge-

lengths’ distributions are correlated. Note that we converted the average-case analysis

problem to the counterpart problem in 1D packing in this dissertation, and it sig-

nificantly reduced the complexity. When future work considers the case where edge

lengths distributions are not independent, it will be hard to re-use the results in 1D

packing and challenging to do case analysis in hyperbox packing for the average-case

analysis.

123

REFERENCES

[1] S. Alberts, M. Mitzenmacher, “Average-Case Analyses of First Fit and Random

Fit Bin Packing,” in ACM SODA, 1998, pp. 290-299.

[2] A. C. F. Alvim, C. C. Ribeiro, F. Glover, and D. J. Aloise, “A Hybrid Im-

provement Heuristic for the One-Dimensional Bin Packing Problem,” Journal of

Heuristics, vol. 10, no. 2, pp. 205-229, March 2004.

[3] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and Q. Wang, “Quickly

Finding Near-Optimal Storage Designs,” ACM Transactions on Computer Sys-

tems (TOCS), vol. 23, no. 4, pp. 337-374, November 2005.

[4] E. Asgeirsson, U. Ayesta, E. Coffman, J. Etra, P. Momcilovic, D. Phillips, V.

Vokhshoori, Z. Wang, and J. Wolfe, “Closed On-Line Bin Packing,” Acta Cyber-

netica, vol. 15, no. 3, pp. 361-367, September 2002.

[5] Y. Azar and O. Regev, “On-Line Bin-Stretching,” Theoretical Computer Science,

vol. 268, no. 1, pp. 17-41, October 2001.

[6] B. S. Baker, “A New Proof for the First-Fit Decreasing Bin-Packing Algorithm,”

Journal of Algorithms, vol. 6, pp. 49-70, 1983.

[7] N. Bansal and M. Sviridenko, “New Approximability and Inapproximability Re-

sults for 2-dimensional Bin Packing,” in ACM SODA, 2004, pp. 196-203.

[8] N. Bansal, J.R. Correa, C. Kenyon, and M. Sviridenko, “Bin Packing in Multiple

Dimensions: Inapproximability Results and Approximation Schemes,” Mathe-

matics of Operations Research, vol. 31, no. 1, pp. 31-49, 2006.

124

[9] A. Bar-Noy, R. E. Ladner, and T. Tamir, “Windows Scheduling as a Restricted

Version of Bin Packing,” in Proceedings of the Fifteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, 2004, pp. 224-233.

[10] A. Bar-Noy, R. E. Ladner, T. Tamir, and T. VanDeGrift, “Windows Scheduling

of Arbitrary Length Jobs on Parallel Machines,” in Proceedings of the Seventeenth

Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2005,

pp. 56-65.

[11] A. Bar-Noy, R. E. Ladner, and T. Tamir, “Windows Scheduling as a Restricted

Version of Bin Packing,” ACM Transactions on Algorithms (TALG), vol. 3, no.

3, pp. 28-28, August 2007.

[12] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template Placement for

Reconfigurable Computing Systems,” IEEE Design and Test of Computers, vol.

17, no. 1, pp. 68-83, January 2000.

[13] W. Bein, J. R. Correa, and Xin Han, “A Fast Asymptotic Approximation Scheme

for Bin Packing with Rejection,” Theoretical Computer Science, vol. 393, no. 1-3,

pp. 14-22, March 2008.

[14] R. Berghammer and F. Reuter, “A Linear Approximation Algorithm for Bin

Packing with Absolute Approximation Factor 3/2,” Science of Computer Pro-

gramming, vol. 48, no. 1, pp. 67-80, July 2003.

[15] P. Berman, J. Jeong, S. P. Kasiviswanathan, and B. Urgaonkar, “Packing to

Angles and Sectors,” in Proceedings of the Nineteenth Annual ACM Symposium

on Parallel Algorithms and Architectures, 2007, pp. 171-180.

[16] S. Bischof and E. W. Mayr, “On-Line Scheduling of Parallel Jobs with Runtime

125

Restrictions,” Theoretical Computer Science, vol. 268, no. 1, pp. 67-90, October

2001.

[17] M. A. Boschetti, “New Lower Bounds for the Three-Dimensional Finite Bin

Packing Problem,” Discrete Applied Mathematics, vol. 140, no. 1-3, pp. 241-258,

May 2004.

[18] J. Boyan and A. W. Moore, “Learning Evaluation Functions to Improve Opti-

mization by Local Search,” The Journal of Machine Learning Research, vol. 1,

pp. 77-112, September 2001.

[19] J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen, “The Competitive

Ratio for On-Line Dual Bin Packing with Restricted Input Sequences,” Nordic

Journal of Computing, vol. 8, no. 4, pp. 463-472, December 2001.

[20] M. Brehob, E. Torng, and P. Uthaisombut, “Applying Extra-Resource Analysis

to Load Balancing,” in Proceedings of the Eleventh Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, 2000, pp. 560-561.

[21] A. Caprara, “Packing 2-dimensional Bins in Harmony,” in IEEE FOCS, 2002,

pp. 490-499.

[22] A. Caprara and U. Pferschy, “Modified Subset Sum Heuristics for Bin Packing,”

Information Processing Letters, vol. 96, no. 1, pp. 18-23, October 2005.

[23] A. Caprara, “Packing d-Dimensional Bins in d Stages,” Mathematics of Opera-

tions Research, vol. 33, no. 1, pp. 203215, February 2008.

[24] E. Chang, W. Wang, and M. S. Kankanhalli, “Multidimensional On-Line Bin

Packing: An Algorithm and its Average-Case Analysis,” Information Processing

Letters, vol. 48, pp. 121-125, 1993.

126

[25] F. Chung, R. Graham, R. Bhagwan, S. Savage, and G. M. Voelker, “Maximiz-

ing Data Locality in Distributed Systems,” Journal of Computer and System

Sciences, vol. 72 no. 8, pp. 1309-1316, December 2006.

[26] B. Codenotti, G. D. Marco, M. Leoncini, M. Montangero, M. Santini, “Ap-

proximation Algorithms for a Hierarchically Structured Bin Packing Problem,”

Information Processing Letters, vol. 89, no. 5, pp. 215-221, March 2004.

[27] E. G. Coffman, C. A. Courcoubetis, M. R. Garey, D. S. Johnson, L. A. Mcgeoch,

P. W. Shor, R. R. Weber, and M. Yannakakis, “Fundamental Discrepancies be-

tween Average-case Analyses Under Discrete and Continuous Distributions - A

Bin Packing Case Study,” in ACM STOC, 1991, pp. 230-240.

[28] E. G. Coffman, D. S. Johnson, G. S. Lueker, and P. W. Shor, “Asymptotic

Probabilistic Analysis of Packing and Related Partitioning Problems,” Statistical

Sciences, vol. 8, pp. 40-47, 1993.

[29] E. G. Coffman, Jr, D. S. Johnson, P. W. Shor, and R. R. Weber, “Markov Chains,

Computer Proofs, and Best Fit Bin Packing,” in ACM STOC, 1993, pp. 412-421.

[30] E. G. Coffman, M. R. Garey, and D. S. Johnson, “Bin Packing Approximation

Algorithms: A Survey,” in Approximation Algorithms for NP-Hard Problems, D.

Hochbaum (ed.), PWS Publishing Co. Boston, MA, pp. 46-93, 1996.

[31] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor,

R. R. Weber, and M. Yannakakis, “Bin Packing with Discrete Item Sizes, Part I:

Perfect Packing Theorems and the Average Case Behavior of Optimal Packings,”

SIAM Journal on Applied Mathematics (SIAP), vol. 13, pp. 384-402, 2000.

[32] E. G. Coffman Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R.

127

R. Weber, and M. Yannakakis, “Perfect Packing Theorems and the Average-case

Behaviour of Optimal and Online Bin Packing,” SIAM Review, vol. 44, no. 1,

pp. 95-108, 2002.

[33] C. Courcoubetis and R. R. Weber, “A Bin-Packing System for Objects with

Sizes from a Finite Set: Necessary and Sufficient Conditions for Stability and

Some Applications,” in Proceedings of the 25th IEEE Conference on Decision

and Control, 1986, pp. 1686-1691.

[34] C. Courcoubetis and R. R. Weber. “Necessary and Sufficient Conditions for Sta-

bility of a Bin-packing System,” Journal of Applied Probability, vol. 23, pp. 989-

999, 1986.

[35] C. Courcoubetis and R. R. Weber, “Stability of On-line Bin Packing with Ran-

dom Arrivals and Long-run Average Constraints,” Probability in the Engineering

and Informational Sciences, vol. 4, pp. 447-460, 1990.

[36] T. G. Crainic, G. Perboli, M. Pezzuto, and R. Tadei, “New Bin Packing Fast

Lower Bounds,” Computers and Operations Research, vol. 34, no. 11, pp. 3439-

3457, November 2007.

[37] J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor, and R. R. Weber, “A Self Orga-

nizing Bin Packing Heuristic,” in Proceeding of the 1999 Workshop on Algorithm

Engineering and Experimentation, 1999, pp. 246-265.

[38] J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin, P. W. Shor, and R. R. Weber,

“On the Sum-of-Squares Algorithm for Bin Packing,” in ACM STOC, 2000, pp.

208-217.

[39] J. Csirik, D. S. Johnson, and C. Kenyon, “On the Worst-Case

128

Performance of the Sum-of-Squares Algorithm for Bin Packing,”

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0509031, 2005.

[40] M. Dawande, S. Kumar, and C. Sriskandarajah, “Performance Bounds of Algo-

rithms for Scheduling Advertisements on a Web Page,” Journal of Scheduling,

vol. 6, no. 4, pp. 373-393, July 2003.

[41] X. Décoret, F. Durand, F. X. Sillion, and J. Dorsey, “Billboard Clouds for Ex-

treme Model Simplification,” ACM Transactions on Graphics (TOG), vol. 22,

no. 3, pp. 689-696, July 2003.

[42] G. Dósa and Y. He, “Bin Packing Problems with Rejection Penalties and Their

Dual Problems,” Information and Computation, vol. 204, no. 5, pp. 795-815,

May 2006.

[43] A. Ejnioui and N. Ranganathan, “Multi-Terminal Net Routing for Partial

Crossbar-Based Multi-FPGA Systems,” in Proceedings of the 1999 ACM/SIGDA

Seventh International Symposium on Field Programmable Gate Arrays, 1999, pp.

176-185.

[44] A. Ejnioui and N. Ranganathan, “Multiterminal Net Routing for Partial

Crossbar-Based Multi-FPGA Systems,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 11, no. 1, pp. 71-78, February 2003.

[45] A. El-Haj-Mahmoud, A. S. AL-Zawawi, A. Anantaraman, and E. Rotenberg,

“Virtual Multiprocessor: an Analyzable, High-Performance Architecture for

Real-Time Computing,” in Proceedings of the 2005 International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, 2005, pp. 213-224.

[46] L. Epstein and L. M. Favrholdt, “On-Line Maximizing the Number of Items

129

Packed in Variable-Sized Bins,” Acta Cybernetica, vol. 16, no. 1, pp. 57-66, Jan-

uary 2003.

[47] L. Epstein and R. V. Stee, “Optimal Online Bounded Space Multidimensional

Packing,” in Proceedings of the Fifteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, 2004, pp. 214-223.

[48] M. R. Garey, R. L. Graham, and J. D. Ullman, “Worst-Case Analysis of Memory

Allocation Algorithm,” in ACM STOC, 1972, pp. 143-150.

[49] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yaho, “Resource Con-

strained Scheduling as Generalized Bin Packing,” Journal Combinatorial Theory,

vol. 21, pp. 257-298, 1976.

[50] M. N. Garofalakis, Y. E. Ioannidis , and B. Özden, “Resource Scheduling for

Composite Multimedia Objects,” in Proceedings of the 24rd International Con-

ference on Very Large Data Bases, 1998, pp. 74-85.

[51] I. P. Gent, “Heuristic Solution of Open Bin Packing Problems,” Journal of

Heuristics, vol. 3, no. 4, pp. 299-304, March 1998.

[52] D. S. Johnson, “Near-Optimal Bin Packing Algorithms,” PhD thesis, Mas-

sachusetts Institute of Technology, Department of Mathematics, Cambridge,

1973.

[53] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, ‘Worst-

Case Performance bounds for Simple One-dimensional Packing Algorithms,”

SIAM Journal on Computing, vol 3, pp. 256-278, 1974.

[54] D. Karger and K. Onak, “Polynomial Approximation Schemes for Smoothed

and Random Instances of Multidimensional Packing Problems,” in Proceedings

130

of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007,

pp. 1207-1216.

[55] R. M. Karp, M. Luby, and A. Marchetti, ”A Probabilistic Analysis of Multidi-

mensional Bin Packing Problems,” in IEEE STOC, 1984, pp. 289-298.

[56] C. Kenyon, Y. Rabani, and A. Sinclair, “Biased Random Walks, Lyapunov Func-

tions, and Stochastic Analysis of Best Bit Bin Packing,” in ACM SODA, 1996,

pp. 351-358.

[57] R. Kleinberg and T. Leighton, “Consistent Load Balancing via Spread Minimiza-

tion,” in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of

computing, 2003, pp. 565-574.

[58] V. Liberatore, “Scheduling Jobs Before Shut-Down,” Nordic Journal of Comput-

ing, vol. 7, no. 3, pp. 204-226, 2000.

[59] K. Loh, B. Golden, and E. Wasil, “Solving the One-Dimensional Bin Packing

Problem with a Weight Annealing Heuristic,” Computers and Operations Re-

search, vol. 35, no. 7, pp. 2283-2291, July 2008.

[60] P. Manyem, R. L. Salt, and M. S. Visser, “Approximation Lower Bounds in

Online LIB Bin Packing and Covering,” Journal of Automata, Languages and

Combinatorics, vol. 8, no. 4, pp. 663-674, April 2003.

[61] F. K. Miyazawa and Y. Wakabayashi, “Cube Packing,” Theoretical Computer

Science, vol. 297, no. 1-3, pp. 355-366, March 2003.

[62] F. K. Miyazawa, Y. Wakabayashi, “Two- and Three-Dimensional Parametric

Packing,” Computers and Operations Research, vol. 34, no. 9, pp. 2589-2603,

September 2007.

131

[63] T. Osogami and H. Okano, “Local Search Algorithms for the Bin Packing Prob-

lem and Their Relationships to Various Construction Heuristics,” Journal of

Heuristics, vol. 9, no. 1, pp. 29-49, January 2003.

[64] “Partition Function P,” http://mathworld.wolfram.com/PartitionFunctionP.html,

January 2007.

[65] X. Qi, “Note: A Note on Worst-Case Performance of Heuristics for Maintenance

Scheduling Problems,” Discrete Applied Mathematics, vol. 155, no. 3, pp. 416-

422, February 2007.

[66] J. Remy, “Resource Constrained Scheduling on Multiple Machines,” Information

Processing Letters, vol. 91, no. 4, pp. 177-182, August 2004.

[67] T. Risse, K. Aberer, A. Wombacher, M. Surridge, and S. Taylor, “Configuration

of Distributed Message Converter Systems,” Performance Evaluation, vol. 58,

no. 1, pp. 43-80, October 2004.

[68] M. Scharbrodt, T. Schickinger, A. Steger, “A New Average Case Analysis for

Completion Time Scheduling,” Journal of the ACM (JACM), vol. 53, no. 1, pp.

121-146, January 2006.

[69] S. S. Seiden, R. V. Stee, “New Bounds for Multi-Dimensional Packing,” in Pro-

ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, 2002, pp. 486-495.

[70] S. S. Seiden, “On the Online Bin Packing Problem,” Journal of the ACM

(JACM), vol. 49, no. 5, pp. 640-671, September 2002.

[71] Y. Shi and D. Ye, “Online Bin Packing with Arbitrary Release Times,” Theoret-

ical Computer Science, vol. 390, no. 1, pp. 110-119, January 2008.

132

[72] P. W. Shor, “The Average-Case Analysis of Some On-line Algorithms for Bin

Packing,” Combinatorica, vol. 6, no. 2, pp. 179-200, 1986.

[73] T. Tambouratzis, “Incremental Bin Packing, Neural,” Parallel and Scientific

Computations, vol. 9, no. 2, pp. 175-186, June 2001.

[74] S. K. Williams and M. J. Magazine, “Heuristic Approaches for Batching Jobs in

Printed Circuit Board Assembly,” Computers and Operations Research, vol. 34,

no. 7, pp. 1943-1962, July 2007.

[75] E. C. Xavier and F. K. Miyazawa, “The Class Constrained Bin Packing Problem

with Applications to Video-on-Demand,” Theoretical Computer Science, vol. 393,

no. 1-3, pp. 240-259, March 2008.

[76] E. C. Xavier and F. K. Miyazawa, “A One-Dimensional Bin Packing Problem

with Shelf Divisions,” Discrete Applied Mathematics, vol. 156, no. 7, pp. 1083-

1096, April 2008.

[77] G. Xiaodong, C. Guoliang, and X. Yinlong, “Deep Performance Analysis of Re-

fined Harmonic Bin Packing Algorithm,” Journal of Computer Science and Tech-

nology, vol. 17, no. 2, pp. 213-218, March 2002.

[78] D. Xu, K. Sun, and H. Li, “Parallel Machine Scheduling with Almost Periodic

Maintenance and Non-Preemptive Jobs to Minimize Makespan,” Computers and

Operations Research, vol. 35, no. 4, pp. 1344-1349, April 2008.

[79] M. Yue, “A Simple Proof of the Inequality FFD(L) ≤ 11
9
OPT (L) + 1, ∀L, for

the FFD Bin-Packing Algorithm.,” Acta Math. App. Sinica, vol. 7, pp. 321-331,

1991.

133

[80] L. Zeng, H. L. Ong, K. M. Ng, and S. B. Liu, “Two Composite Methods for Soft

Drink Distribution Problem,” Advances in Engineering Software, vol. 39, no. 5,

pp. 438-443, May 2008.

[81] P. Zheng and L. M. Ni, “EMPOWER: A Cluster Architecture Supporting Net-

work Emulation,” IEEE Transactions on Parallel and Distributed Systems, vol.

15, no. 7, pp. 617-629, July 2004.

134

VITA

Xiafeng Li received his B.S. degree in mechanical engineering from Jingdezhen

Ceramic Institute, China, in 1997 and M.S. degree in computer science and engineer-

ing from Shanghai Jiaotong University, China in 2001. He graduated with a Ph.D.

in computer science from Texas A&M University December 2008.

His research interests include bin packing algorithms and approximation algo-

rithms. He may be contacted at:

Xiafeng Li C/O Dongling Zhan

59 Xinjing Rd, APT. 201,

Fengjing, Jinshan District,

Shanghai, 201501, P. R. China

The typist for this dissertation was Xiafeng Li.

