6 research outputs found

    Coloring vertices of a graph or finding a Meyniel obstruction

    Full text link
    A Meyniel obstruction is an odd cycle with at least five vertices and at most one chord. A graph is Meyniel if and only if it has no Meyniel obstruction as an induced subgraph. Here we give a O(n^2) algorithm that, for any graph, finds either a clique and coloring of the same size or a Meyniel obstruction. We also give a O(n^3) algorithm that, for any graph, finds either aneasily recognizable strong stable set or a Meyniel obstruction

    Finding a Strong Stable Set or a Meyniel Obstruction in any Graph

    Get PDF
    A strong stable set in a graph GG is a stable set that contains a vertex of every maximal clique of GG. A Meyniel obstruction is an odd circuit with at least five vertices and at most one chord. Given a graph GG and a vertex vv of GG, we give a polytime algorithm to find either a strong stable set containing vv or a Meyniel obstruction in GG. This can then be used to find in any graph, a clique and colouring of the same size or a Meyniel obstruction

    Perfectly contractile graphs and quadratic toric rings

    Full text link
    Perfect graphs form one of the distinguished classes of finite simple graphs. In 2006, Chudnovsky, Robertson, Saymour and Thomas proved that a graph is perfect if and only if it has no odd holes and no odd antiholes as induced subgraphs, which was conjectured by Berge. We consider the class A{\mathcal A} of graphs that have no odd holes, no antiholes and no odd stretchers as induced subgraphs. In particular, every graph belonging to A{\mathcal A} is perfect. Everett and Reed conjectured that a graph belongs to A{\mathcal A} if and only if it is perfectly contractile. In the present paper, we discuss graphs belonging to A{\mathcal A} from a viewpoint of commutative algebra. In fact, we conjecture that a perfect graph GG belongs to A{\mathcal A} if and only if the toric ideal of the stable set polytope of GG is generated by quadratic binomials. Especially, we show that this conjecture is true for Meyniel graphs, perfectly orderable graphs, and clique separable graphs, which are perfectly contractile graphs.Comment: 10 page

    Perfect Graphs

    Get PDF
    This chapter is a survey on perfect graphs with an algorithmic flavor. Our emphasis is on important classes of perfect graphs for which there are fast and efficient recognition and optimization algorithms. The classes of graphs we discuss in this chapter are chordal, comparability, interval, perfectly orderable, weakly chordal, perfectly contractile, and chi-bound graphs. For each of these classes, when appropriate, we discuss the complexity of the recognition algorithm and algorithms for finding a minimum coloring, and a largest clique in the graph and its complement
    corecore