4,283 research outputs found

    A family of q-Dyson style constant term identities

    Get PDF
    AbstractBy generalizing Gessel–Xin's Laurent series method for proving the Zeilberger–Bressoud q-Dyson Theorem, we establish a family of q-Dyson style constant term identities. These identities give explicit formulas for certain coefficients of the q-Dyson product, including three conjectures of Sills' as special cases and generalizing Stembridge's first layer formulas for characters of SL(n,C)

    The importance of the Selberg integral

    Full text link
    It has been remarked that a fair measure of the impact of Atle Selberg's work is the number of mathematical terms which bear his name. One of these is the Selberg integral, an n-dimensional generalization of the Euler beta integral. We trace its sudden rise to prominence, initiated by a question to Selberg from Enrico Bombieri, more than thirty years after publication. In quick succession the Selberg integral was used to prove an outstanding conjecture in random matrix theory, and cases of the Macdonald conjectures. It further initiated the study of q-analogues, which in turn enriched the Macdonald conjectures. We review these developments and proceed to exhibit the sustained prominence of the Selberg integral, evidenced by its central role in random matrix theory, Calogero-Sutherland quantum many body systems, Knizhnik-Zamolodchikov equations, and multivariable orthogonal polynomial theory.Comment: 43 page

    Polynomial functors and combinatorial Dyson-Schwinger equations

    Full text link
    We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 11-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structure. Precisely, for any finitary polynomial endofunctor PP defined over groupoids, the system of combinatorial Dyson-Schwinger equations X=1+P(X)X=1+P(X) has a universal solution, namely the groupoid of PP-trees. The isoclasses of PP-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+B_+-operators. The solution to this equation is a series (the Green function) which always enjoys a Fa\`a di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Fa\`a di Bruno bialgebra. Varying PP yields different bialgebras, and cartesian natural transformations between various PP yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of PP-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-L\"of Type Theory (expounded elsewhere).Comment: v4: minor adjustments, 49pp, final version to appear in J. Math. Phy
    • …
    corecore