9 research outputs found

    Lace: non-blocking split deque for work-stealing

    Get PDF
    Work-stealing is an efficient method to implement load balancing in fine-grained task parallelism. Typically, concurrent deques are used for this purpose. A disadvantage of many concurrent deques is that they require expensive memory fences for local deque operations.\ud \ud In this paper, we propose a new non-blocking work-stealing deque based on the split task queue. Our design uses a dynamic split point between the shared and the private portions of the deque, and only requires memory fences when shrinking the shared portion.\ud \ud We present Lace, an implementation of work-stealing based on this deque, with an interface similar to the work-stealing library Wool, and an evaluation of Lace based on several common benchmarks. We also implement a recent approach using private deques in Lace. We show that the split deque and the private deque in Lace have similar low overhead and high scalability as Wool

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Laws of order

    Get PDF
    Building correct and efficient concurrent algorithms is known to be a difficult problem of fundamental importance. To achieve efficiency, designers try to remove unnecessary and costly synchronization. However, not only is this manual trial-and-error process ad-hoc, time consuming and error-prone, but it often leaves designers pondering the question of: is it inherently impossible to eliminate certain synchronization, or is it that I was unable to eliminate it on this attempt and I should keep trying? In this paper we respond to this question. We prove that it is impossible to build concurrent implementations of classic and ubiquitous specifications such as sets, queues, stacks, mutual exclusion and read-modify-write operations, that completely eliminate the use of expensive synchronization. We prove that one cannot avoid the use of either: i) read-after-write (RAW), where a write to shared variable A is followed by a read to a different shared variable B without a write to B in between, or ii) atomic write-after-read (AWAR), where an atomic operation reads and then writes to shared locations. Unfortunately, enforcing RAW or AWAR is expensive on all current mainstream processors. To enforce RAW, memory ordering--also called fence or barrier--instructions must be used. To enforce AWAR, atomic instructions such as compare-and-swap are required. However, these instructions are typically substantially slower than regular instructions. Although algorithm designers frequently struggle to avoid RAW and AWAR, their attempts are often futile. Our result characterizes the cases where avoiding RAW and AWAR is impossible. On the flip side, our result can be used to guide designers towards new algorithms where RAW and AWAR can be eliminated

    A dynamic-sized nonblocking work stealing deque

    No full text

    Simple, safe, and efficient memory management using linear pointers

    Full text link
    Efficient and safe memory management is a hard problem. Garbage collection promises automatic memory management but comes with the cost of increased memory footprint, reduced parallelism in multi-threaded programs, unpredictable pause time, and intricate tuning parameters balancing the program's workload and designated memory usage in order for an application to perform reasonably well. Existing research mitigates the above problems to some extent, but programmer error could still cause memory leak by erroneously keeping memory references when they are no longer needed. We need a methodology for programmers to become resource aware, so that efficient, scalable, predictable and high performance programs may be written without the fear of resource leak. Linear logic has been recognized as the formalism of choice for resource tracking. It requires explicit introduction and elimination of resources and guarantees that a resource cannot be implicitly shared or abandoned, hence must be linear. Early languages based on linear logic focused on Curry-Howard correspondence. They began by limiting the expressive powers of the language and then reintroduced them by allowing controlled sharing which is necessary for recursive functions. However, only by deviating from Curry-Howard correspondence could later development actually address programming errors in resource usage. The contribution of this dissertation is a simple, safe, and efficient approach introducing linear resource ownership semantics into C++ (which is still a widely used language after 30 years since inception) through linear pointer, a smart pointer inspired by linear logic. By implementing various linear data structures and a parallel, multi-threaded memory allocator based on these data structures, this work shows that linear pointer is practical and efficient in the real world, and that it is possible to build a memory management stack that is entirely leak free. The dissertation offers some closing remarks on the difficulties a formal system would encounter when reasoning about a concurrent linear data algorithm, and what might be done to solve these problems

    Locality Awareness for Task Parallel Computation

    Get PDF
    The task parallel programming model allows programmers to express concurrency at a high level of abstraction and places the burden of scheduling parallel execution on the run time system. Efficient scheduling of tasks on multi-socket multicore shared memory systems requires careful consideration of an increasingly complex memory hierarchy, including shared caches and non-uniform memory access (NUMA) characteristics. In this dissertation, we study the performance impact of these issues and other performance factors that limit parallel speedup in task parallel program executions and propose new scheduling strategies to improve performance. Our performance model characterizes lost efficiency in terms of overhead time, idle time, and work time inflation due to increased data access costs. We introduce a hierarchical run time scheduler that combines the benefits of work stealing and parallel depth-first schedulers. Matching the scheduler design to the memory hierarchy of multicore NUMA systems limits costly remote data accesses while maintaining load balance and exploiting constructive data sharing among threads that share a cache. We also propose a locality- based scheduling framework based on locality domains and comprising an API for programmers to specify application locality and a scheduler that honors those specifications. Implementations of the hierarchical and locality-based schedulers in our OpenMP run time system exhibit performance improvements on several task parallel benchmark applications over existing scheduling strategies and production OpenMP run time systems.Doctor of Philosoph

    Scheduling and synchronization for multicore concurrency platforms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 217-230).Developing correct and efficient parallel programs is difficult since programmers often have to manage low-level details like scheduling and synchronization explicitly. Recently, however, many hardware vendors have been shifting towards building multicore computers. This trend creates an enormous pressure to create concurrency platforms - platforms that provide an easier interface for parallel programming and enable ordinary programmers to write scalable, portable and efficient parallel programs. This thesis provides some provably-good practical solutions to problems that arise in the implementation of concurrency platforms, particularly in the domain of scheduling and synchronization. The first part of this thesis describes work on scheduling of parallel programs written in dynamic multithreaded languages (such as Cilk, Hood etc.). These languages allow the programmer to express parallelism of their code in a natural manner, while an automatic scheduler in the concurrency platform is responsible for scheduling the program on the underlying parallel hardware. This thesis presents designs to increase the functionality of these concurrency platforms. The second part of the thesis presents work on transactional memory semantics and design. Transactional memory (TM), has been recently proposed as an alternative to locks. TM provides a transactional interface to memory. The programmers can specify their critical sections inside a transaction, and the TM concurrency platform guarantees that the region executes atomically. One of the purported advantages of TM over locks is that transactional code is composable.(cont.) Most of the current TM concurrency platforms do not support full composability, however. This thesis addresses two of the composability problems in existing TM concurrency platforms.by Kunal Agrawal.Ph.D
    corecore