36,008 research outputs found

    Comparative Analysis among DSP and FPGA-based Control Capabilities in PWM Power Converters

    Get PDF
    PWM power converters are close to be mature for standard diffusion. New FPGA technologies could now realise at best the digital control key-points: flexible performance and time to market. The paper deals with the new digital control properties of FPGA-based techniques. On the basis of reference structures, a comparative analysis is carried-out trading-off dynamic performances and immunity to PWM environment. All possible sampled control or DSP techniques are firstly analysed and compared to each other. A breakthrough concept for FPGAs is defined, definitely solving for PWM feedback immunity by practical over-sampling and parallel processing while improving dynamic performances. Simulation tests and the application of dead-beat control clearly point-out the respective dynamic properties

    Feedback control of unsupported standing in paraplegia. Part I: optimal control approach

    Get PDF
    This is the first of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantarflexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors extend the design of the controllers to a nested-loop LQG (linear quadratic Gaussian) stimulation controller which has ankle moment feedback (inner loops) and inverted pendulum angle feedback (outer loop). Each control loop is tuned by two parameters, the control weighting and an observer rise-time, which together determine the behavior. The nested structure was chosen because it is robust, despite changes in the muscle properties (fatigue) and interference from spasticity

    Deformation Control in Rest-to-Rest Motion of Mechanisms with Flexible Links

    Get PDF
    This paper develops and validates experimentally a feedback strategy for the reduction of the link deformations in rest-to-rest motion of mechanisms with flexible links, named Delayed Reference Control (DRC). The technique takes advantage of the inertial coupling between rigid-bodymotion and elasticmotion to control the undesired link deformations by shifting in time the position reference through an action reference parameter. The action reference parameter is computed on the fly based on the sensed strains by solving analytically an optimization problem. An outer control loop is closed to compute the references for the position controllers of each actuator, which can be thought of as the inner control loop. The resulting multiloop architecture of the DRC is a relevant advantage over several traditional feedback controllers: DRC can be implemented by just adding an outer control loop to standard position controllers. A validation of the proposed control strategy is provided by applying the DRC to the real-time control of a four-bar linkage

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    Objectives, stimulus and feedback in signal control of road traffic

    Get PDF
    This article identifies the prospective role of a range of intelligent transport systems technologies for the signal control of road traffic. We discuss signal control within the context of traffic management and control in urban road networks and then present a control-theoretic formulation for it that distinguishes the various roles of detector data, objectives of optimization, and control feedback. By reference to this, we discuss the importance of different kinds of variability in traffic flows and review the state of knowledge in respect of control in the presence of different combinations of them. In light of this formulation and review, we identify a range of important possibilities for contributions to traffic management and control through traffic measurement and detection technology, and contemporary flexible optimization techniques that use various kinds of automated learning
    corecore