2 research outputs found

    Road network maintenance and repair considering day-to-day traffic dynamics and transient congestion

    Get PDF
    Road maintenance and repair (M&R) are essential for keeping the performance of traffic infrastructure at a satisfactory level, and extending their lifetime to the fullest extent possible. For road networks, effective M&R plans should not be constructed in a myopic or ad-hoc fashion regardless of the subsequent benefits and costs associated with those projects considered. A hallmark of road M&R studies is the use of user equilibrium (UE) models to predict network traffic for a given set of road conditions with or without M&R. However, UE approaches ignore the traffic disequilibrium states and transient congestion as a result of M&R derived disruptions to network traffic on a day-to-day (DTD) time scale, which could produce additional substantial travel costs. As shown in the numerical studies on a M&R plan of the Sioux Falls network, the additional maintenance derived travel cost is about 4 billion, which is far exceed the actual M&R construction cost of 0.2 billion. Therefore, it is necessary to recognise the substantial social costs induced by maintenance-derived disruptions in the form of transient congestion when planning M&R. This realistic and pressing issue is not properly addressed by the road M&R planning problems with traffic equilibrium constraints. This thesis proposes a dual-time-scale road network M&R model aiming to simultaneously capture the long-term effects of M&R activities under traffic equilibria, and the maintenance-derived transient congestion using day-to-day (DTD) traffic evolutionary dynamics. The notion of ‘day’ is arbitrarily defined (e.g. weeks or months). The proposed M&R model consists of three sub-models: (1) a within-day dynamic network loading (DNL) model; (2) a day-to-day dynamic traffic assignment (DTD DTA) model; and (3) a day-to-day road quality model. The within-day traffic dynamics is captured by the Lighthill-Whitham-Richards (LWR) fluid dynamic network loading model. The day-to-day phase of the traffic dynamics specify travellers’ route and departure time choices in a stochastic manner based on a sequential mixed multinomial or nested Logit model. Travel information sharing behaviour is further integrated into this macroscopic doubly dynamic (both within-day and day-to-day dynamic) traffic assignment (DDTA) model to account for the impact of incomplete information on travel experiences. A deterministic day-to-day road quality model based on an exponential form of traffic flow is employed to govern the road deterioration process, where a quarter-car index (QI) is applied. All these dynamics are incorporated in a holistic dual-time-scale M&R model, which captures realistic phenomena associated with short-term and long-term effects of M&R, including physical queuing and spillback, road capacity reduction, temporal-spatial shift of congestion due to on-going M&R activities, and the tendency to converge to an equilibrium after M&R actions. Following the dual-time-scale road network M&R model, a bi-level road M&R optimisation model is proposed, where the aforementioned three sub-models are incorporated into the lower-level problem, while the upper-level is to minimise M&R expenditure and network travel costs while maintaining a satisfactory level of road quality. The M&R planning horizon is long yet finite (e.g. years or decades). A ‘quality-usage’ feedback mechanism is investigated in the proposed bi-level M&R model, namely, (1) the DTD road quality evolution as a result of DTD traffic loads and the M&R effectiveness; and (2) the evolution of DTD traffic in response to both DTD road deterioration and the improved road quality after M&R activities. The effectiveness of developed M&R optimisation model is demonstrated through case studies on the Sioux Falls network. A metaheuristic Genetic Algorithm (GA) approach is employed to solve the M&R problems given its highly nonlinear, nonconvex and non-differentiable nature. Explicit travellers’ choice behaviour dynamics and complex traffic phenomena such as network paradoxes arising from M&R activities are illustrated. Through a comparison with the results under the dynamic user equilibrium (DUE) method, the proposed DTD method achieves significant reduction in network travel cost of $ 25 million, approximately 20% of the total cost. This points to the benefit of using the DTD dynamics for capturing network’s responses to M&R in a more realistic way. The M&R model proposed in this thesis could provide valuable managerial insights for road M&R planning agencies.Open Acces
    corecore