5 research outputs found

    An integrated recommender system for improved accuracy and aggregate diversity

    Get PDF
    Information explosion creates dilemma in finding preferred products from the digital marketplaces. Thus, it is challenging for online companies to develop an efficient recommender system for large portfolio of products. The aim of this research is to develop an integrated recommender system model for online companies, with the ability of providing personalized services to their customers. The K-nearest neighbors (KNN) algorithm uses similarity matrices for performing the recommendation system; however, multiple drawbacks associated with the conventional KNN algorithm have been identified. Thus, an algorithm considering weight metric is used to select only significant nearest neighbors (SNN). Using secondary dataset on MovieLens and combining four types of prediction models, the study develops an integrated recommender system model to identify SNN and predict accurate personalized recommendations at lower computation cost. A timestamp used in the integrated model improves the performance of the personalized recommender system. The research contributes to behavioral analytics and recommender system literature by providing an integrated decision-making model for improved accuracy and aggregate diversity. The proposed prediction model helps to improve the profitability of online companies by selling diverse and preferred portfolio of products to their customers

    Improved collaborative filtering using clustering and association rule mining on implicit data

    Get PDF
    The recommender systems are recently becoming more significant due to their ability in making decisions on appropriate choices. Collaborative Filtering (CF) is the most successful and most applied technique in the design of a recommender system where items to an active user will be recommended based on the past rating records from like-minded users. Unfortunately, CF may lead to poor recommendation when user ratings on items are very sparse (insufficient number of ratings) in comparison with the huge number of users and items in user-item matrix. In the case of a lack of user rating on items, implicit feedback is used to profile a user’s item preferences. Implicit feedback can indicate users’ preferences by providing more evidences and information through observations made on users’ behaviors. Data mining technique, which is the focus of this research, can predict a user’s future behavior without item evaluation and can too, analyze his preferences. In order to investigate the states of research in CF and implicit feedback, a systematic literature review has been conducted on the published studies related to topic areas in CF and implicit feedback. To investigate users’ activities that influence the recommender system developed based on the CF technique, a critical observation on the public recommendation datasets has been carried out. To overcome data sparsity problem, this research applies users’ implicit interaction records with items to efficiently process massive data by employing association rules mining (Apriori algorithm). It uses item repetition within a transaction as an input for association rules mining, in which can achieve high recommendation accuracy. To do this, a modified preprocessing has been employed to discover similar interest patterns among users. In addition, the clustering technique (Hierarchical clustering) has been used to reduce the size of data and dimensionality of the item space as the performance of association rules mining. Then, similarities between items based on their features have been computed to make recommendations. Experiments have been conducted and the results have been compared with basic CF and other extended version of CF techniques including K-Means Clustering, Hybrid Representation, and Probabilistic Learning by using public dataset, namely, Million Song dataset. The experimental results demonstrate that the proposed technique exhibits improvements of an average of 20% in terms of Precision, Recall and Fmeasure metrics when compared to the basic CF technique. Our technique achieves even better performance (an average of 15% improvement in terms of Precision and Recall metrics) when compared to the other extended version of CF techniques, even when the data is very sparse

    Simple and effective neural-free soft-cluster embeddings for item cold-start recommendations

    Get PDF
    Recommender systems are widely used in online platforms for easy exploration of personalized content. The best available recommendation algorithms are based on using the observed preference information among collaborating entities. A significant challenge in recommender system continues to be item cold-start recommendation: how to effectively recommend items with no observed or past preference information. Here we propose a two-stage algorithm based on soft clustering to provide an efficient solution to this problem. The crux of our approach lies in representing the items as soft-cluster embeddings in the space spanned by the side-information associated with the items. Though many item embedding approaches have been proposed for item cold-start recommendations in the past—and simple as they might appear—to the best of our knowledge, the approach based on soft-cluster embeddings has not been proposed in the research literature. Our experimental results on four benchmark datasets conclusively demonstrate that the proposed algorithm makes accurate recommendations in item cold-start settings compared to the state-of-the-art algorithms according to commonly used ranking metrics like Normalized Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP). The performance of our proposed algorithm on the MovieLens 20M dataset clearly demonstrates the scalability aspect of our algorithm compared to other popular algorithms. We also propose the metric Cold Items Precision (CIP) to quantify the ability of a system to recommend cold-start items. CIP can be used in conjunction with relevance ranking metrics like NDCG and MAP to measure the effectiveness of the cold-start recommendation algorithm
    corecore