55,308 research outputs found

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Software Defined Media: Virtualization of Audio-Visual Services

    Full text link
    Internet-native audio-visual services are witnessing rapid development. Among these services, object-based audio-visual services are gaining importance. In 2014, we established the Software Defined Media (SDM) consortium to target new research areas and markets involving object-based digital media and Internet-by-design audio-visual environments. In this paper, we introduce the SDM architecture that virtualizes networked audio-visual services along with the development of smart buildings and smart cities using Internet of Things (IoT) devices and smart building facilities. Moreover, we design the SDM architecture as a layered architecture to promote the development of innovative applications on the basis of rapid advancements in software-defined networking (SDN). Then, we implement a prototype system based on the architecture, present the system at an exhibition, and provide it as an SDM API to application developers at hackathons. Various types of applications are developed using the API at these events. An evaluation of SDM API access shows that the prototype SDM platform effectively provides 3D audio reproducibility and interactiveness for SDM applications.Comment: IEEE International Conference on Communications (ICC2017), Paris, France, 21-25 May 201

    Polyphonic Sound Event Detection by using Capsule Neural Networks

    Full text link
    Artificial sound event detection (SED) has the aim to mimic the human ability to perceive and understand what is happening in the surroundings. Nowadays, Deep Learning offers valuable techniques for this goal such as Convolutional Neural Networks (CNNs). The Capsule Neural Network (CapsNet) architecture has been recently introduced in the image processing field with the intent to overcome some of the known limitations of CNNs, specifically regarding the scarce robustness to affine transformations (i.e., perspective, size, orientation) and the detection of overlapped images. This motivated the authors to employ CapsNets to deal with the polyphonic-SED task, in which multiple sound events occur simultaneously. Specifically, we propose to exploit the capsule units to represent a set of distinctive properties for each individual sound event. Capsule units are connected through a so-called "dynamic routing" that encourages learning part-whole relationships and improves the detection performance in a polyphonic context. This paper reports extensive evaluations carried out on three publicly available datasets, showing how the CapsNet-based algorithm not only outperforms standard CNNs but also allows to achieve the best results with respect to the state of the art algorithms
    corecore