2 research outputs found

    The Multi-agent Simulation-based Framework for Optimization of Detectors Layout in Public Crowded Places

    Get PDF
    AbstractIn this work the framework for detectors layout optimization based on a multi-agent simulation is proposed. Its main intention is to provide a decision support team with a tool for automatic design of social threat detection systems for public crowded places. Containing a number of distributed detectors, this system performs detection and an identification of threat carriers. The generic model of detector used in the framework allows to consider detection of various types of threats, e.g. infections, explosives, drugs, radiation. The underlying agent-based models provide data on social mobility, which is used along with a probability based quality assessment model within the optimization process. The implemented multi-criteria optimization scheme is based on a genetic algorithm. For experimental study the framework has been applied in order to get the optimal detectors’ layout in Pulkovo airport

    Collaborative Solutions to Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) merge computer vision, image processing and wireless sensor network disciplines to solve problems in multi-camera applications in large surveillance areas. Although potentially powerful, VSNs also present unique challenges that could hinder their practical deployment because of the unique camera features including the extremely higher data rate, the directional sensing characteristics, and the existence of visual occlusions. In this dissertation, we first present a collaborative approach for target localization in VSNs. Traditionally; the problem is solved by localizing targets at the intersections of the back-projected 2D cones of each target. However, the existence of visual occlusions among targets would generate many false alarms. Instead of resolving the uncertainty about target existence at the intersections, we identify and study the non-occupied areas in 2D cones and generate the so-called certainty map of targets non-existence. We also propose distributed integration of local certainty maps by following a dynamic itinerary where the entire map is progressively clarified. The accuracy of target localization is affected by the existence of faulty nodes in VSNs. Therefore, we present the design of a fault-tolerant localization algorithm that would not only accurately localize targets but also detect the faults in camera orientations, tolerate these errors and further correct them before they cascade. Based on the locations of detected targets in the fault-tolerated final certainty map, we construct a generative image model that estimates the camera orientations, detect inaccuracies and correct them. In order to ensure the required visual coverage to accurately localize targets or tolerate the faulty nodes, we need to calculate the coverage before deploying sensors. Therefore, we derive the closed-form solution for the coverage estimation based on the certainty-based detection model that takes directional sensing of cameras and existence of visual occlusions into account. The effectiveness of the proposed collaborative and fault-tolerant target localization algorithms in localization accuracy as well as fault detection and correction performance has been validated through the results obtained from both simulation and real experiments. In addition, conducted simulation shows extreme consistency with results from theoretical closed-form solution for visual coverage estimation, especially when considering the boundary effect
    corecore