1,381 research outputs found

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Software-defined Networking enabled Resource Management and Security Provisioning in 5G Heterogeneous Networks

    Get PDF
    Due to the explosive growth of mobile data traffic and the shortage of spectral resources, 5G networks are envisioned to have a densified heterogeneous network (HetNet) architecture, combining multiple radio access technologies (multi-RATs) into a single holistic network. The co-existing of multi-tier architectures bring new challenges, especially on resource management and security provisioning, due to the lack of common interface and consistent policy across HetNets. In this thesis, we aim to address the technical challenges of data traffic management, coordinated spectrum sharing and security provisioning in 5G HetNets through the introduction of a programmable management platform based on Software-defined networking (SDN). To address the spectrum shortage problem in cellular networks, cellular data traffic is efficiently offloaded to the Wi-Fi network, and the quality of service of user applications is guaranteed with the proposed delay tolerance based partial data offloading algorithm. A two-layered information collection is also applied to best load balancing decision-making. Numerical results show that the proposed schemes exploit an SDN controller\u27s global view of the HetNets and take optimized resource allocation decisions. To support growing vehicle-generated data traffic in 5G-vehicle ad hoc networks (VANET), SDN-enabled adaptive vehicle clustering algorithm is proposed based on the real-time road traffic condition collected from HetNet infrastructure. Traffic offloading is achieved within each cluster and dynamic beamformed transmission is also applied to improve trunk link communication quality. To further achieve a coordinated spectrum sharing across HetNets, an SDN enabled orchestrated spectrum sharing scheme that integrates participating HetNets into an amalgamated network through a common configuration interface and real-time information exchange is proposed. In order to effectively protect incumbent users, a real-time 3D interference map is developed to guide the spectrum access based on the SDN global view. MATLAB simulations confirm that average interference at incumbents is reduced as well as the average number of denied access. Moreover, to tackle the contradiction between more stringent latency requirement of 5G and the potential delay induced by frequent authentications in 5G small cells and HetNets, an SDN-enabled fast authentication scheme is proposed in this thesis to simplify authentication handover, through sharing of user-dependent secure context information (SCI) among related access points. The proposed SCI is a weighted combination of user-specific attributes, which provides unique fingerprint of the specific device without additional hardware and computation cost. Numerical results show that the proposed non-cryptographic authentication scheme achieves comparable security with traditional cryptographic algorithms, while reduces authentication complexity and latency especially when network load is high

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram
    • …
    corecore