4 research outputs found

    A review on big data stream processing applications: contributions, benefits, and limitations

    Get PDF
    The amount of data in our world has been rapidly keep growing from time to time. In the era of big data, the efficient processing and analysis of big data using machine learning algorithm is highly required, especially when the data comes in form of streams. There is no doubt that big data has become an important source of information and knowledge in making decision process. Nevertheless, dealing with this kind of data comes with great difficulties; thus, several techniques have been used in analyzing the data in the form of streams. Many techniques have been proposed and studied to handle big data and give decisions based on off-line batch analysis. Today, we need to make a constructive decision based on online streaming data analysis. Many researchers in recent years proposed some different kind of frameworks for processing the big data streaming. In this work, we explore and present in detail some of the recent achievements in big data streaming in term of contributions, benefits, and limitations. As well as some of recent platforms suitable to be used for big data streaming analytics. Moreover, we also highlight several issues that will be faced in big data stream processing. In conclusion, it is hoped that this study will assist the researchers in choosing the best and suitable framework for big data streaming projects

    Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction with Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces

    Full text link
    © 2012 IEEE. The unprecedented increase in data volume has become a severe challenge for conventional patterns of data mining and learning systems tasked with handling big data. The recently introduced Spark platform is a new processing method for big data analysis and related learning systems, which has attracted increasing attention from both the scientific community and industry. In this paper, we propose a shared nearest-neighbor quantum game-based attribute reduction (SNNQGAR) algorithm that incorporates the hierarchical coevolutionary Spark model. We first present a shared coevolutionary nearest-neighbor hierarchy with self-evolving compensation that considers the features of nearest-neighborhood attribute subsets and calculates the similarity between attribute subsets according to the shared neighbor information of attribute sample points. We then present a novel attribute weight tensor model to generate ranking vectors of attributes and apply them to balance the relative contributions of different neighborhood attribute subsets. To optimize the model, we propose an embedded quantum equilibrium game paradigm (QEGP) to ensure that noisy attributes do not degrade the big data reduction results. A combination of the hierarchical coevolutionary Spark model and an improved MapReduce framework is then constructed that it can better parallelize the SNNQGAR to efficiently determine the preferred reduction solutions of the distributed attribute subsets. The experimental comparisons demonstrate the superior performance of the SNNQGAR, which outperforms most of the state-of-the-art attribute reduction algorithms. Moreover, the results indicate that the SNNQGAR can be successfully applied to segment overlapping and interdependent fuzzy cerebral tissues, and it exhibits a stable and consistent segmentation performance for neonatal cerebral cortical surfaces
    corecore