1,674 research outputs found

    SNAP : A Software-Defined & Named-Data Oriented Publish-Subscribe Framework for Emerging Wireless Application Systems

    Get PDF
    The evolution of Cyber-Physical Systems (CPSs) has given rise to an emergent class of CPSs defined by ad-hoc wireless connectivity, mobility, and resource constraints in computation, memory, communications, and battery power. These systems are expected to fulfill essential roles in critical infrastructure sectors. Vehicular Ad-Hoc Network (VANET) and a swarm of Unmanned Aerial Vehicles (UAV swarm) are examples of such systems. The significant utility of these systems, coupled with their economic viability, is a crucial indicator of their anticipated growth in the future. Typically, the tasks assigned to these systems have strict Quality-of-Service (QoS) requirements and require sensing, perception, and analysis of a substantial amount of data. To fulfill these QoS requirements, the system requires network connectivity, data dissemination, and data analysis methods that can operate well within a system\u27s limitations. Traditional Internet protocols and methods for network connectivity and data dissemination are typically designed for well-engineering cyber systems and do not comprehensively support this new breed of emerging systems. The imminent growth of these CPSs presents an opportunity to develop broadly applicable methods that can meet the stated system requirements for a diverse range of systems and integrate these systems with the Internet. These methods could potentially be standardized to achieve interoperability among various systems of the future. This work presents a solution that can fulfill the communication and data dissemination requirements of a broad class of emergent CPSs. The two main contributions of this work are the Application System (APPSYS) system abstraction, and a complementary communications framework called the Software-Defined NAmed-data enabled Publish-Subscribe (SNAP) communication framework. An APPSYS is a new breed of Internet application representing the mobile and resource-constrained CPSs supporting data-intensive and QoS-sensitive safety-critical tasks, referred to as the APPSYS\u27s mission. The functioning of the APPSYS is closely aligned with the needs of the mission. The standard APPSYS architecture is distributed and partitions the system into multiple clusters where each cluster is a hierarchical sub-network. The SNAP communication framework within the APPSYS utilized principles of Information-Centric Networking (ICN) through the publish-subscribe communication paradigm. It further extends the role of brokers within the publish-subscribe paradigm to create a distributed software-defined control plane. The SNAP framework leverages the APPSYS design characteristics to provide flexible and robust communication and dynamic and distributed control-plane decision-making that successfully allows the APPSYS to meet the communication requirements of data-oriented and QoS-sensitive missions. In this work, we present the design, implementation, and performance evaluation of an APPSYS through an exemplar UAV swarm APPSYS. We evaluate the benefits offered by the APPSYS design and the SNAP communication framework in meeting the dynamically changed requirements of a data-intensive and QoS-sensitive Coordinated Search and Tracking (CSAT) mission operating in a UAV swarm APPSYS on the battlefield. Results from the performance evaluation demonstrate that the UAV swarm APPSYS successfully monitors and mitigates network impairment impacting a mission\u27s QoS to support the mission\u27s QoS requirements

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operación y la gestión de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desafíos críticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilización de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes móviles (MNO). Esto requiere técnicas avanzadas de gestión de redes que deben desarrollarse en función de las características especiales de estas redes y las demandas de tráfico. Por lo tanto, es necesario proporcionar soluciones que permitan la creación de particiones de red aisladas lógicamente sobre la infraestructura de red física compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualización de la RAN destinadas a abordar estos desafíos. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red física, en un escenario LTE-A de múltiples niveles que es propiedad de un solo MNO. Proponemos una solución de virtualización a nivel de estación base (BS), donde los módulos de banda base de BSs distribuidas, interconectadas a través de la interfaz lógica X2, cooperan para reasignar los recursos radio en función de las necesidades de tráfico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparación con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales móviles (MVNO), al integrar el capacity broker en la arquitectura de administración de red 3GPP con un conjunto míinimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en inglés on-demand) a varios MVNOs. Además, para aprovechar al máximo las capacidades del capacity broker, proponemos un algoritmo para la asignación de recursos bajo demanda, considerando dos tipos de tráfico con distintas características. Nuestra propuesta alcanza 50% más de solicitudes admitidas sin violación del Acuerdo de Nivel de Servicio (SLA) en comparación con otros esquemas. En la tercera parte de la tesis, estudiamos una solución para el slicing de red independiente del tipo de BS, considerando la virtualización de BS en un escenario de múltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tráfico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra solución logra una ganancia promedio de uso de espectro de 67% y una reducción de la carga de procesamiento de la banda base de 16.6% en comparación con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desafíos y retos de investigación para trabajos futuros.Postprint (published version

    Blockchain-enabled resource management and sharing for 6G communications

    Get PDF
    The sixth-generation (6G) network must provide performance superior to previous generations to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, and sub 1 ms latency and ubiquitous connection for the Internet of Everything (IoE). However, with the scarcity of spectrum resources, efficient resource management and sharing are crucial to achieving all these ambitious requirements. One possible technology to achieve all this is the blockchain. Because of its inherent properties, the blockchain has recently gained an important position, which is of great significance to 6G network and other networks. In particular, the integration of the blockchain in 6G will enable the network to monitor and manage resource utilization and sharing efficiently. Hence, in this paper, we discuss the potentials of the blockchain for resource management and sharing in 6G using multiple application scenarios, namely, Internet of things, device-to-device communications, network slicing, and inter-domain blockchain ecosystems

    Models and optimisation methods for interference coordination in self-organising cellular networks

    Get PDF
    A thesis submitted for the degree of Doctor of PhilosophyWe are at that moment of network evolution when we have realised that our telecommunication systems should mimic features of human kind, e.g., the ability to understand the medium and take advantage of its changes. Looking towards the future, the mobile industry envisions the use of fully automatised cells able to self-organise all their parameters and procedures. A fully self-organised network is the one that is able to avoid human involvement and react to the fluctuations of network, traffic and channel through the automatic/autonomous nature of its functioning. Nowadays, the mobile community is far from this fully self-organised kind of network, but they are taken the first steps to achieve this target in the near future. This thesis hopes to contribute to the automatisation of cellular networks, providing models and tools to understand the behaviour of these networks, and algorithms and optimisation approaches to enhance their performance. This work focuses on the next generation of cellular networks, in more detail, in the DownLink (DL) of Orthogonal Frequency Division Multiple Access (OFDMA) based networks. Within this type of cellular system, attention is paid to interference mitigation in self-organising macrocell scenarios and femtocell deployments. Moreover, this thesis investigates the interference issues that arise when these two cell types are jointly deployed, complementing each other in what is currently known as a two-tier network. This thesis also provides new practical approaches to the inter-cell interference problem in both macro cell and femtocell OFDMA systems as well as in two-tier networks by means of the design of a novel framework and the use of mathematical optimisation. Special attention is paid to the formulation of optimisation problems and the development of well-performing solving methods (accurate and fast)
    corecore