38,072 research outputs found

    NOSQL design for analytical workloads: Variability matters

    Get PDF
    Big Data has recently gained popularity and has strongly questioned relational databases as universal storage systems, especially in the presence of analytical workloads. As result, co-relational alternatives, commonly known as NOSQL (Not Only SQL) databases, are extensively used for Big Data. As the primary focus of NOSQL is on performance, NOSQL databases are directly designed at the physical level, and consequently the resulting schema is tailored to the dataset and access patterns of the problem in hand. However, we believe that NOSQL design can also benefit from traditional design approaches. In this paper we present a method to design databases for analytical workloads. Starting from the conceptual model and adopting the classical 3-phase design used for relational databases, we propose a novel design method considering the new features brought by NOSQL and encompassing relational and co-relational design altogether.Peer ReviewedPostprint (author's final draft

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Aspect-oriented interaction in multi-organisational web-based systems

    Get PDF
    Separation of concerns has been presented as a promising tool to tackle the design of complex systems in which cross-cutting properties that do not fit into the scope of a class must be satisfied. Unfortunately, current proposals assume that objects interact by means of object-oriented method calls, which implies that they embed interactions with others into their functional code. This makes them dependent on this interaction model, and makes it difficult to reuse them in a context in which another interaction model is more suited, e.g., tuple spaces, multiparty meetings, ports, and so forth. In this paper, we show that functionality can be described separately from the interaction model used, which helps enhance reusability of functional code and coordination patterns. Our proposal is innovative in that it is the first that achieves a clear separation between functionality and interaction in an aspect-oriented manner. In order to show that it is feasible, we adapted the multiparty interaction model to the context of multiorganisational web-based systems and developed a class framework to build business objects whose performance rates comparably to handmade implementations; the development time, however, decreases significantly.Comisión Interministerial de Ciencia y Tecnología TIC2000-1106-C02-0

    Interactive analysis of high-dimensional association structures with graphical models

    Get PDF
    Graphical chain models are a capable tool for analyzing multivariate data. However, their practical use may still be cumbersome in some respect since fitting the model requires the application of an intensive selection strategy based on the calculation of an enormous number of different regressions. In this paper, we present a computer system especially designed for the calculation of graphical chain models which is not only planned to automatically carry out the model search but also to visualize the corresponding graph at each stage of the model fit on request by the user. It additionally allows to modify the graph and the model fit interactively
    corecore