508 research outputs found

    Optimization with multivariate conditional value-at-risk constraints

    Get PDF
    For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers' risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate case. However, enforcing multivariate stochastic dominance constraints can often be overly conservative in practice. As an alternative, we focus on the widely-applied risk measure conditional value-at-risk (CVaR), introduce a multivariate CVaR relation, and develop a novel optimization model with multivariate CVaR constraints based on polyhedral scalarization. To solve such problems for finite probability spaces we develop a cut generation algorithm, where each cut is obtained by solving a mixed integer problem. We show that a multivariate CVaR constraint reduces to finitely many univariate CVaR constraints, which proves the finite convergence of our algorithm. We also show that our results can be naturally extended to a wider class of coherent risk measures. The proposed approach provides a flexible, and computationally tractable way of modeling preferences in stochastic multi-criteria decision making. We conduct a computational study for a budget allocation problem to illustrate the effect of enforcing multivariate CVaR constraints and demonstrate the computational performance of the proposed solution methods

    Optimization with multivariate conditional value-at-risk constraints

    Get PDF
    For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers' risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate case. However, enforcing multivariate stochastic dominance constraints can often be overly conservative in practice. As an alternative, we focus on the widely-applied risk measure conditional value-at-risk (CVaR), introduce a multivariate CVaR relation, and develop a novel optimization model with multivariate CVaR constraints based on polyhedral scalarization. To solve such problems for finite probability spaces we develop a cut generation algorithm, where each cut is obtained by solving a mixed integer problem. We show that a multivariate CVaR constraint reduces to finitely many univariate CVaR constraints, which proves the finite convergence of our algorithm. We also show that our results can be naturally extended to a wider class of coherent risk measures. The proposed approach provides a flexible, and computationally tractable way of modeling preferences in stochastic multi-criteria decision making. We conduct a computational study for a budget allocation problem to illustrate the effect of enforcing multivariate CVaR constraints and demonstrate the computational performance of the proposed solution methods

    On multiobjective optimization from the nonsmooth perspective

    Get PDF
    Practical applications usually have multiobjective nature rather than having only one objective to optimize. A multiobjective problem cannot be solved with a single-objective solver as such. On the other hand, optimization of only one objective may lead to an arbitrary bad solutions with respect to other objectives. Therefore, special techniques for multiobjective optimization are vital. In addition to multiobjective nature, many real-life problems have nonsmooth (i.e. not continuously differentiable) structure. Unfortunately, many smooth (i.e. continuously differentiable) methods adopt gradient-based information which cannot be used for nonsmooth problems. Since both of these characteristics are relevant for applications, we focus here on nonsmooth multiobjective optimization. As a research topic, nonsmooth multiobjective optimization has gained only limited attraction while the fields of nonsmooth single-objective and smooth multiobjective optimization distinctively have attained greater interest. This dissertation covers parts of nonsmooth multiobjective optimization in terms of theory, methodology and application. Bundle methods are widely considered as effective and reliable solvers for single-objective nonsmooth optimization. Therefore, we investigate the use of the bundle idea in the multiobjective framework with three different methods. The first one generalizes the single-objective proximal bundle method for the nonconvex multiobjective constrained problem. The second method adopts the ideas from the classical steepest descent method into the convex unconstrained multiobjective case. The third method is designed for multiobjective problems with constraints where both the objectives and constraints can be represented as a difference of convex (DC) functions. Beside the bundle idea, all three methods are descent, meaning that they produce better values for each objective at each iteration. Furthermore, all of them utilize the improvement function either directly or indirectly. A notable fact is that none of these methods use scalarization in the traditional sense. With the scalarization we refer to the techniques transforming a multiobjective problem into the single-objective one. As the scalarization plays an important role in multiobjective optimization, we present one special family of achievement scalarizing functions as a representative of this category. In general, the achievement scalarizing functions suit well in the interactive framework. Thus, we propose the interactive method using our special family of achievement scalarizing functions. In addition, this method utilizes the above mentioned descent methods as tools to illustrate the range of optimal solutions. Finally, this interactive method is used to solve the practical case studies of the scheduling the final disposal of the spent nuclear fuel in Finland.Käytännön optimointisovellukset ovat usein luonteeltaan ennemmin moni- kuin yksitavoitteisia. Erityisesti monitavoitteisille tehtäville suunnitellut menetelmät ovat tarpeen, sillä monitavoitteista optimointitehtävää ei sellaisenaan pysty ratkaisemaan yksitavoitteisilla menetelmillä eikä vain yhden tavoitteen optimointi välttämättä tuota mielekästä ratkaisua muiden tavoitteiden suhteen. Monitavoitteisuuden lisäksi useat käytännön tehtävät ovat myös epäsileitä siten, etteivät niissä esiintyvät kohde- ja rajoitefunktiot välttämättä ole kaikkialla jatkuvasti differentioituvia. Kuitenkin monet optimointimenetelmät hyödyntävät gradienttiin pohjautuvaa tietoa, jota ei epäsileille funktioille ole saatavissa. Näiden molempien ominaisuuksien ollessa keskeisiä sovelluksia ajatellen, keskitytään tässä työssä epäsileään monitavoiteoptimointiin. Tutkimusalana epäsileä monitavoiteoptimointi on saanut vain vähän huomiota osakseen, vaikka sekä sileä monitavoiteoptimointi että yksitavoitteinen epäsileä optimointi erikseen ovat aktiivisia tutkimusaloja. Tässä työssä epäsileää monitavoiteoptimointia on käsitelty niin teorian, menetelmien kuin käytännön sovelluksien kannalta. Kimppumenetelmiä pidetään yleisesti tehokkaina ja luotettavina menetelminä epäsileän optimointitehtävän ratkaisemiseen ja siksi tätä ajatusta hyödynnetään myös tässä väitöskirjassa kolmessa eri menetelmässä. Ensimmäinen näistä yleistää yksitavoitteisen proksimaalisen kimppumenetelmän epäkonveksille monitavoitteiselle rajoitteiselle tehtävälle sopivaksi. Toinen menetelmä hyödyntää klassisen nopeimman laskeutumisen menetelmän ideaa konveksille rajoitteettomalle tehtävälle. Kolmas menetelmä on suunniteltu erityisesti monitavoitteisille rajoitteisille tehtäville, joiden kohde- ja rajoitefunktiot voidaan ilmaista kahden konveksin funktion erotuksena. Kimppuajatuksen lisäksi kaikki kolme menetelmää ovat laskevia eli ne tuottavat joka kierroksella paremman arvon jokaiselle tavoitteelle. Yhteistä on myös se, että nämä kaikki hyödyntävät parannusfunktiota joko suoraan sellaisenaan tai epäsuorasti. Huomattavaa on, ettei yksikään näistä menetelmistä hyödynnä skalarisointia perinteisessä merkityksessään. Skalarisoinnilla viitataan menetelmiin, joissa usean tavoitteen tehtävä on muutettu sopivaksi yksitavoitteiseksi tehtäväksi. Monitavoiteoptimointimenetelmien joukossa skalarisoinnilla on vankka jalansija. Esimerkkinä skalarisoinnista tässä työssä esitellään yksi saavuttavien skalarisointifunktioiden perhe. Yleisesti saavuttavat skalarisointifunktiot soveltuvat hyvin interaktiivisten menetelmien rakennuspalikoiksi. Täten kuvaillaan myös esiteltyä skalarisointifunktioiden perhettä hyödyntävä interaktiivinen menetelmä, joka lisäksi hyödyntää laskevia menetelmiä optimaalisten ratkaisujen havainnollistamisen apuna. Lopuksi tätä interaktiivista menetelmää käytetään aikatauluttamaan käytetyn ydinpolttoaineen loppusijoitusta Suomessa

    Exact And Representative Algorithms For Multi Objective Optimization

    Get PDF
    In most real-life problems, the decision alternatives are evaluated with multiple conflicting criteria. The entire set of non-dominated solutions for practical problems is impossible to obtain with reasonable computational effort. Decision maker generally needs only a representative set of solutions from the actual Pareto front. First algorithm we present is for efficiently generating a well dispersed non-dominated solution set representative of the Pareto front which can be used for general multi objective optimization problem. The algorithm first partitions the criteria space into grids to generate reference points and then searches for non-dominated solutions in each grid. This grid-based search utilizes achievement scalarization function and guarantees Pareto optimality. The results of our experimental results demonstrate that the proposed method is very competitive with other algorithms in literature when representativeness quality is considered; and advantageous from the computational efficiency point of view. Although generating the whole Pareto front does not seem very practical for many real life cases, sometimes it is required for verification purposes or where DM wants to run his decision making structures on the full set of Pareto solutions. For this purpose we present another novel algorithm. This algorithm attempts to adapt the standard branch and bound approach to the multi objective context by proposing to branch on solution points on objective space. This algorithm is proposed for multi objective integer optimization type of problems. Various properties of branch and bound concept has been investigated and explained within the multi objective optimization context such as fathoming, node selection, heuristics, as well as some multi objective optimization specific concepts like filtering, non-domination probability, running in parallel. Potential of this approach for being used both as a full Pareto generation or an approximation approach has been shown with experimental studies

    Scalable Pareto set generation for multiobjective co-design problems in water distribution networks: a continuous relaxation approach

    No full text
    In this paper, we study the multiobjective co-design problem of optimal valve placement and operation in water distribution networks, addressing the minimization of average pressure and pressure variability indices. The presented formulation considers nodal pressures, pipe flows and valve locations as decision variables, where binary variables are used to model the placement of control valves. The resulting optimization problem is a multiobjective mixed integer nonlinear optimization problem. As conflicting objectives, average zone pressure and pressure variability can not be simultaneously optimized. Therefore, we present the concept of Pareto optima sets to investigate the trade-offs between the two conflicting objectives and evaluate the best compromise. We focus on the approximation of the Pareto front, the image of the Pareto optima set through the objective functions, using the weighted sum, normal boundary intersection and normalized normal constraint scalarization techniques. Each of the three methods relies on the solution of a series of single-objective optimization problems, which are mixed integer nonlinear programs (MINLPs) in our case. For the solution of each single-objective optimization problem, we implement a relaxation method that solves a sequence of nonlinear programs (NLPs) whose stationary points converge to a stationary point of the original MINLP. The relaxed NLPs have a sparse structure that come from the sparse water network graph constraints. In solving the large number of relaxed NLPs, sparsity is exploited by tailored techniques to improve the performance of the algorithms further and render the approaches scalable for large scale networks. The features of the proposed scalarization approaches are evaluated using a published benchmarking network model
    corecore