79,343 research outputs found

    A topological approach for segmenting human body shape

    Get PDF
    Segmentation of a 3D human body, is a very challenging problem in applications exploiting human scan data. To tackle this problem, the paper proposes a topological approach based on the discrete Reeb graph (DRG) which is an extension of the classical Reeb graph to handle unorganized clouds of 3D points. The essence of the approach concerns detecting critical nodes in the DRG, thereby permitting the extraction of branches that represent parts of the body. Because the human body shape representation is built upon global topological features that are preserved so long as the whole structure of the human body does not change, our approach is quite robust against noise, holes, irregular sampling, frame change and posture variation. Experimental results performed on real scan data demonstrate the validity of our method

    Image Segmentation with Eigenfunctions of an Anisotropic Diffusion Operator

    Full text link
    We propose the eigenvalue problem of an anisotropic diffusion operator for image segmentation. The diffusion matrix is defined based on the input image. The eigenfunctions and the projection of the input image in some eigenspace capture key features of the input image. An important property of the model is that for many input images, the first few eigenfunctions are close to being piecewise constant, which makes them useful as the basis for a variety of applications such as image segmentation and edge detection. The eigenvalue problem is shown to be related to the algebraic eigenvalue problems resulting from several commonly used discrete spectral clustering models. The relation provides a better understanding and helps developing more efficient numerical implementation and rigorous numerical analysis for discrete spectral segmentation methods. The new continuous model is also different from energy-minimization methods such as geodesic active contour in that no initial guess is required for in the current model. The multi-scale feature is a natural consequence of the anisotropic diffusion operator so there is no need to solve the eigenvalue problem at multiple levels. A numerical implementation based on a finite element method with an anisotropic mesh adaptation strategy is presented. It is shown that the numerical scheme gives much more accurate results on eigenfunctions than uniform meshes. Several interesting features of the model are examined in numerical examples and possible applications are discussed

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes

    Full text link
    In this article, a new method for segmentation and restoration of images on two-dimensional surfaces is given. Active contour models for image segmentation are extended to images on surfaces. The evolving curves on the surfaces are mathematically described using a parametric approach. For image restoration, a diffusion equation with Neumann boundary conditions is solved in a postprocessing step in the individual regions. Numerical schemes are presented which allow to efficiently compute segmentations and denoised versions of images on surfaces. Also topology changes of the evolving curves are detected and performed using a fast sub-routine. Finally, several experiments are presented where the developed methods are applied on different artificial and real images defined on different surfaces

    To Learn or Not to Learn Features for Deformable Registration?

    Full text link
    Feature-based registration has been popular with a variety of features ranging from voxel intensity to Self-Similarity Context (SSC). In this paper, we examine the question on how features learnt using various Deep Learning (DL) frameworks can be used for deformable registration and whether this feature learning is necessary or not. We investigate the use of features learned by different DL methods in the current state-of-the-art discrete registration framework and analyze its performance on 2 publicly available datasets. We draw insights into the type of DL framework useful for feature learning and the impact, if any, of the complexity of different DL models and brain parcellation methods on the performance of discrete registration. Our results indicate that the registration performance with DL features and SSC are comparable and stable across datasets whereas this does not hold for low level features.Comment: 9 pages, 4 figure

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    • 

    corecore