20 research outputs found

    Well-balanced finite volume schemes for hydrodynamic equations with general free energy

    Get PDF
    Well balanced and free energy dissipative first- and second-order accurate finite volume schemes are proposed for a general class of hydrodynamic systems with linear and nonlinear damping. The natural Liapunov functional of the system, given by its free energy, allows for a characterization of the stationary states by its variation. An analog property at the discrete level enables us to preserve stationary states at machine precision while keeping the dissipation of the discrete free energy. These schemes allow for analysing accurately the stability properties of stationary states in challeging problems such as: phase transitions in collective behavior, generalized Euler-Poisson systems in chemotaxis and astrophysics, and models in dynamic density functional theories; having done a careful validation in a battery of relevant test cases.Comment: Videos from the simulations of this work are available at https://sergioperezresearch.wordpress.com/well-balance

    Positive and free energy satisfying schemes for diffusion with interaction potentials

    Full text link
    In this paper, we design and analyze second order positive and free energy satisfying schemes for solving diffusion equations with interaction potentials. The semi-discrete scheme is shown to conserve mass, preserve solution positivity, and satisfy a discrete free energy dissipation law for nonuniform meshes. These properties for the fully-discrete scheme (first order in time) remain preserved without a strict restriction on time steps. For the fully second order (in both time and space) scheme, we use a local scaling limiter to restore solution positivity when necessary. It is proved that such limiter does not destroy the second order accuracy. In addition, these schemes are easy to implement, and efficient in simulations over long time. Both one and two dimensional numerical examples are presented to demonstrate the performance of these schemes.Comment: 29 pages, 3 tables, 6 figure
    corecore