3,749 research outputs found

    Particle Swarm and Bacterial Foraging Inspired Hybrid Artificial Bee Colony Algorithm for Numerical Function Optimization

    Get PDF
    Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms

    Memetic Artificial Bee Colony Algorithm for Large-Scale Global Optimization

    Full text link
    Memetic computation (MC) has emerged recently as a new paradigm of efficient algorithms for solving the hardest optimization problems. On the other hand, artificial bees colony (ABC) algorithms demonstrate good performances when solving continuous and combinatorial optimization problems. This study tries to use these technologies under the same roof. As a result, a memetic ABC (MABC) algorithm has been developed that is hybridized with two local search heuristics: the Nelder-Mead algorithm (NMA) and the random walk with direction exploitation (RWDE). The former is attended more towards exploration, while the latter more towards exploitation of the search space. The stochastic adaptation rule was employed in order to control the balancing between exploration and exploitation. This MABC algorithm was applied to a Special suite on Large Scale Continuous Global Optimization at the 2012 IEEE Congress on Evolutionary Computation. The obtained results the MABC are comparable with the results of DECC-G, DECC-G*, and MLCC.Comment: CONFERENCE: IEEE Congress on Evolutionary Computation, Brisbane, Australia, 201

    Forecasting Stock Price using Wavelet Neural Network Optimized by Directed Arti ficial Bee Colony Algorithm, Journal of Telecommunications and Information Technology, 2016, nr 2

    Get PDF
    Stock prediction with data mining techniques is one of the most important issues in finance. This field has attracted great scientific interest and has become a crucial research area to provide a more precise prediction process. This study proposes an integrated approach where Haar wavelet transform and Artificial Neural Network optimized by Directed Artificial Bee Colony algorithm are combined for the stock price prediction. The proposed approach was tested on the historical price data collected from Yahoo Finance with different companies. Furthermore, the prediction result was found satisfactorily enough as a guide for traders and investors in making qualitative decisions

    Edge detection of aerial images using artificial bee colony algorithm

    Get PDF
    Edge detection techniques are the one of the best popular and significant implementation areas of the image processing. Moreover, image processing is very widely used in so many fields. Therefore, lots of methods are used in the development and the developed studies provide a variety of solutions to problems of computer vision systems. In many studies, metaheuristic algorithms have been used for obtaining better results. In this paper, aerial images are used for edge information extraction by using Artificial Bee Colony (ABC) Optimization Algorithm. Procedures were performed on gray scale aerial images which are taken from RADIUS/DARPA-IU Fort Hood database. Initially bee colony size was specified according to sizes of images. Then a threshold value was set for each image, which related with images’ standard deviation of gray scale values. After the bees were distributed, fitness values and probability values were computed according to gray scale value. While appropriate pixels were specified, the other ones were being abandoned and labeled as banned pixels therefore bees never located on these pixels again. So the edges were found without the need to examine all pixels in the image. Our improved method’s results are compared with other results found in the literature according to detection error and similarity calculations’. All the experimental results show that ABC can be used for obtaining edge information from images.Publisher's Versio
    corecore