2 research outputs found

    Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm

    Get PDF
    In recent years, a variety of relevance feedback (RF) schemes have been developed to improve the performance of content-based image retrieval (CBIR). Given user feedback information, the key to a RF scheme is how to select a subset of image features to construct a suitable dissimilarity measure. Among various RF schemes, biased discriminant analysis (BDA) based RF is one of the most promising. It is based on the observation that all positive samples are alike, while in general each negative sample is negative in its own way. However, to use BDA, the small sample size (SSS) problem is a big challenge, as users tend to give a small number of feedback samples. To explore solutions to this issue, this paper proposes a direct kernel BDA (DKBDA), which is less sensitive to SSS. An incremental DKBDA (IDKBDA) is also developed to speed up the analysis. Experimental results are reported on a real-world image collection to demonstrate that the proposed methods outperform the traditional kernel BDA (KBDA) and the support vector machine (SVM) based RF algorithms

    Content-based image retrieval-- a small sample learning approach.

    Get PDF
    Tao Dacheng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 70-75).Abstracts in English and Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Content-based Image Retrieval --- p.1Chapter 1.2 --- SVM based RF in CBIR --- p.3Chapter 1.3 --- DA based RF in CBIR --- p.4Chapter 1.4 --- Existing CBIR Engines --- p.5Chapter 1.5 --- Practical Applications of CBIR --- p.10Chapter 1.6 --- Organization of this thesis --- p.11Chapter Chapter 2 --- Statistical Learning Theory and Support Vector Machine --- p.12Chapter 2.1 --- The Recognition Problem --- p.12Chapter 2.2 --- Regularization --- p.14Chapter 2.3 --- The VC Dimension --- p.14Chapter 2.4 --- Structure Risk Minimization --- p.15Chapter 2.5 --- Support Vector Machine --- p.15Chapter 2.6 --- Kernel Space --- p.17Chapter Chapter 3 --- Discriminant Analysis --- p.18Chapter 3.1 --- PCA --- p.18Chapter 3.2 --- KPCA --- p.18Chapter 3.3 --- LDA --- p.20Chapter 3.4 --- BDA --- p.20Chapter 3.5 --- KBDA --- p.21Chapter Chapter 4 --- Random Sampling Based SVM --- p.24Chapter 4.1 --- Asymmetric Bagging SVM --- p.25Chapter 4.2 --- Random Subspace Method SVM --- p.26Chapter 4.3 --- Asymmetric Bagging RSM SVM --- p.26Chapter 4.4 --- Aggregation Model --- p.30Chapter 4.5 --- Dissimilarity Measure --- p.31Chapter 4.6 --- Computational Complexity Analysis --- p.31Chapter 4.7 --- QueryGo Image Retrieval System --- p.32Chapter 4.8 --- Toy Experiments --- p.35Chapter 4.9 --- Statistical Experimental Results --- p.36Chapter Chapter 5 --- SSS Problems in KBDA RF --- p.42Chapter 5.1 --- DKBDA --- p.43Chapter 5.1.1 --- DLDA --- p.43Chapter 5.1.2 --- DKBDA --- p.43Chapter 5.2 --- NKBDA --- p.48Chapter 5.2.1 --- NLDA --- p.48Chapter 5.2.2 --- NKBDA --- p.48Chapter 5.3 --- FKBDA --- p.49Chapter 5.3.1 --- FLDA --- p.49Chapter 5.3.2 --- FKBDA --- p.49Chapter 5.4 --- Experimental Results --- p.50Chapter Chapter 6 --- NDA based RF for CBIR --- p.52Chapter 6.1 --- NDA --- p.52Chapter 6.2 --- SSS Problem in NDA --- p.53Chapter 6.2.1 --- Regularization method --- p.53Chapter 6.2.2 --- Null-space method --- p.54Chapter 6.2.3 --- Full-space method --- p.54Chapter 6.3 --- Experimental results --- p.55Chapter 6.3.1 --- K nearest neighbor evaluation for NDA --- p.55Chapter 6.3.2 --- SSS problem --- p.56Chapter 6.3.3 --- Evaluation experiments --- p.57Chapter Chapter 7 --- Medical Image Classification --- p.59Chapter 7.1 --- Introduction --- p.59Chapter 7.2 --- Region-based Co-occurrence Matrix Texture Feature --- p.60Chapter 7.3 --- Multi-level Feature Selection --- p.62Chapter 7.4 --- Experimental Results --- p.63Chapter 7.4.1 --- Data Set --- p.64Chapter 7.4.2 --- Classification Using Traditional Features --- p.65Chapter 7.4.3 --- Classification Using the New Features --- p.66Chapter Chapter 8 --- Conclusion --- p.68Bibliography --- p.7
    corecore